99 research outputs found

    High coercivity induced by mechanical milling in cobalt ferrite powders

    Get PDF
    In this work we report a study of the magnetic behavior of ferrimagnetic oxide CoFe2O4 treated by mechanical milling with different grinding balls. The cobalt ferrite nanoparticles were prepared using a simple hydrothermal method and annealed at 500oC. The non-milled sample presented coercivity of about 1.9 kOe, saturation magnetization of 69.5 emu/g, and a remanence ratio of 0.42. After milling, two samples attained coercivity of 4.2 and 4.1 kOe, and saturation magnetization of 67.0 and 71.4 emu/g respectively. The remanence ratio MR/MS for these samples increase to 0.49 and 0.51, respectively. To investigate the influence of the microstructure on the magnetic behavior of these samples, we used X-ray powder diffraction (XPD), transmission electron microscopy (TEM), and vibrating sample magnetometry (VSM). The XPD analysis by the Williamson-Hall plot was used to estimate the average crystallite size and strain induced by mechanical milling in the samples

    Muon Spin Rotation Measurement of the Magnetic Field Penetration Depth in Ba(Fe0.93 Co0.07)2 As2 : Evidence for Multiple Superconducting Gaps

    Get PDF
    We have performed transverse field muon spin rotation measurements of single crystals of Ba(Fe0.93_{0.93}Co0.07)2_{0.07})_2As2_2 with the applied magnetic field along the c^\hat{c} direction. Fourier transforms of the measured spectra reveal an anisotropic lineshape characteristic of an Abrikosov vortex lattice. We have fit the μ\muSRSR spectra to a microscopic model in terms of the penetration depth λ\lambda and the Ginzburg-Landau parameter κ\kappa. We find that as a function of temperature, the penetration depth varies more rapidly than in standard weak coupled BCS theory. For this reason we first fit the temperature dependence to a power law where the power varies from 1.6 to 2.2 as the field changes from 200G to 1000G. Due to the surprisingly strong field dependence of the power and the superfluid density we proceeded to fit the temperature dependence to a two gap model, where the size of the two gaps is field independent. From this model, we obtained gaps of 2Δ1=3.7kBTc2\Delta_1=3.7k_BT_c and 2Δ2=1.6kBTc2\Delta_2=1.6k_BT_c, corresponding to roughly 6 meV and 3 meV respectively

    Static magnetic order of Sr4_{4}A2_{2}O6_{6}Fe2_{2}As2_{2} (A = Sc and V) revealed by local probes

    Full text link
    Static magnetic order of quasi two-dimensional FeAs compounds Sr4A2O6-xFe2As2, with A = Sc and V, has been detected by 57Fe Moessbauer and muon spin relaxation ({\mu}SR) spectroscopies. The non-superconducting stoichiometric (x = 0) A = Sc system exhibits a static internal/hyperfine magnetic field both at the 57Fe and {\mu}+ sites, indicating antiferromagnetic order of Fe moments below TN = 35 K with ~ 0.1 Bohr magneton per Fe at T = 2 K. The superconducting and oxygen deficient (x = 0.4) A = V system exhibits a static internal field only at the {\mu}+ site below TN ~ 40 K, indicating static magnetic order of V moments co-existing with superconductivity without freezing of Fe moments. These results suggest that the 42622 FeAs systems belong to the same paradigm with the 1111 and 122 FeAs systems with respect to magnetic behavior of Fe moments.Comment: 4 pages 4 figures: for information, contact [email protected]

    Measurements and analysis of the upper critical field Hc2H_{c2} on an underdoped and overdoped La2xSrxCuO4La_{2-x}Sr_xCuO_4 compounds

    Full text link
    The upper critical field Hc2H_{c2} is one of the many non conventional properties of high-TcT_c cuprates. It is possible that the Hc2(T)H_{c2}(T) anomalies are due to the presence of inhomogeneities in the local charge carrier density ρ\rho of the CuO2CuO_2 planes. In order to study this point, we have prepared good quality samples of polycrystalline La2xSrxCuO4La_{2-x}Sr_xCuO_{4} using the wet-chemical method, which has demonstrated to produce samples with a better cation distribution. In particular, we have studied the temperature dependence of the second critical field, Hc2(T)H_{c2}(T), through the magnetization measurements on two samples with opposite average carrier concentration (ρm=x\rho_m=x) and nearly the same critical temperature, namely ρm=0.08\rho_m = 0.08 (underdoped) and ρm=0.25\rho_m = 0.25 (overdoped). The results close to TcT_c do not follow the usual Ginzburg-Landau theory and are interpreted by a theory which takes into account the influence of the inhomogeneities.Comment: Published versio

    Radiation-damage produced in BaHfO₃ irradiated with thermal and fast-neutrons

    Get PDF
    Samples of BaHfO₃ were irradiated with fast and thermal neutrons to produce ^181Hf. Attenuations of the gamma-gamma perturbed angular correlations in ^181Ta were observed, and they may have been caused by the interaction between defects (produced during or after neutron irradiation) and oxygen vacancies. Several defect structures were detected. For one of the structures, an excitation energy of 12 meV was measured, which was attributed to an electron state below the conduction band. The values of the dielectric constant and of the effective electron mass were also deduced
    corecore