65 research outputs found
On local and global aspects of the 1:4 resonance in the conservative cubic H\'enon maps
We study the 1:4 resonance for the conservative cubic H\'enon maps
with positive and negative cubic term. These maps show up
different bifurcation structures both for fixed points with eigenvalues
and for 4-periodic orbits. While for the 1:4 resonance unfolding
has the so-called Arnold degeneracy (the first Birkhoff twist coefficient
equals (in absolute value) to the first resonant term coefficient), the map
has a different type of degeneracy because the resonant term can
vanish. In the last case, non-symmetric points are created and destroyed at
pitchfork bifurcations and, as a result of global bifurcations, the 1:4
resonant chain of islands rotates by . For both maps several
bifurcations are detected and illustrated.Comment: 21 pages, 13 figure
Abundance of attracting, repelling and elliptic periodic orbits in two-dimensional reversible maps
We study dynamics and bifurcations of two-dimensional reversible maps having
non-transversal heteroclinic cycles containing symmetric saddle periodic
points. We consider one-parameter families of reversible maps unfolding
generally the initial heteroclinic tangency and prove that there are infinitely
sequences (cascades) of bifurcations of birth of asymptotically stable and
unstable as well as elliptic periodic orbits
Non-ergodicity of the motion in three dimensional steep repelling dispersing potentials
It is demonstrated numerically that smooth three degrees of freedom
Hamiltonian systems which are arbitrarily close to three dimensional strictly
dispersing billiards (Sinai billiards) have islands of effective stability, and
hence are non-ergodic. The mechanism for creating the islands are corners of
the billiard domain.Comment: 6 pages, 8 figures, submitted to Chao
On stochastic sea of the standard map
Consider a generic one-parameter unfolding of a homoclinic tangency of an
area preserving surface diffeomorphism. We show that for many parameters
(residual subset in an open set approaching the critical value) the
corresponding diffeomorphism has a transitive invariant set of full
Hausdorff dimension. The set is a topological limit of hyperbolic sets
and is accumulated by elliptic islands.
As an application we prove that stochastic sea of the standard map has full
Hausdorff dimension for sufficiently large topologically generic parameters.Comment: 36 pages, 5 figure
Post-critical set and non existence of preserved meromorphic two-forms
We present a family of birational transformations in depending on
two, or three, parameters which does not, generically, preserve meromorphic
two-forms. With the introduction of the orbit of the critical set (vanishing
condition of the Jacobian), also called ``post-critical set'', we get some new
structures, some "non-analytic" two-form which reduce to meromorphic two-forms
for particular subvarieties in the parameter space. On these subvarieties, the
iterates of the critical set have a polynomial growth in the \emph{degrees of
the parameters}, while one has an exponential growth out of these subspaces.
The analysis of our birational transformation in is first carried out
using Diller-Favre criterion in order to find the complexity reduction of the
mapping. The integrable cases are found. The identification between the
complexity growth and the topological entropy is, one more time, verified. We
perform plots of the post-critical set, as well as calculations of Lyapunov
exponents for many orbits, confirming that generically no meromorphic two-form
can be preserved for this mapping. These birational transformations in ,
which, generically, do not preserve any meromorphic two-form, are extremely
similar to other birational transformations we previously studied, which do
preserve meromorphic two-forms. We note that these two sets of birational
transformations exhibit totally similar results as far as topological
complexity is concerned, but drastically different results as far as a more
``probabilistic'' approach of dynamical systems is concerned (Lyapunov
exponents). With these examples we see that the existence of a preserved
meromorphic two-form explains most of the (numerical) discrepancy between the
topological and probabilistic approach of dynamical systems.Comment: 34 pages, 7 figure
Quadratic Volume Preserving Maps
We study quadratic, volume preserving diffeomorphisms whose inverse is also
quadratic. Such maps generalize the Henon area preserving map and the family of
symplectic quadratic maps studied by Moser. In particular, we investigate a
family of quadratic volume preserving maps in three space for which we find a
normal form and study invariant sets. We also give an alternative proof of a
theorem by Moser classifying quadratic symplectic maps.Comment: Ams LaTeX file with 4 figures (figure 2 is gif, the others are ps
Kneadings, Symbolic Dynamics and Painting Lorenz Chaos. A Tutorial
A new computational technique based on the symbolic description utilizing
kneading invariants is proposed and verified for explorations of dynamical and
parametric chaos in a few exemplary systems with the Lorenz attractor. The
technique allows for uncovering the stunning complexity and universality of
bi-parametric structures and detect their organizing centers - codimension-two
T-points and separating saddles in the kneading-based scans of the iconic
Lorenz equation from hydrodynamics, a normal model from mathematics, and a
laser model from nonlinear optics.Comment: Journal of Bifurcations and Chaos, 201
A birational mapping with a strange attractor: Post critical set and covariant curves
We consider some two-dimensional birational transformations. One of them is a
birational deformation of the H\'enon map. For some of these birational
mappings, the post critical set (i.e. the iterates of the critical set) is
infinite and we show that this gives straightforwardly the algebraic covariant
curves of the transformation when they exist. These covariant curves are used
to build the preserved meromorphic two-form. One may have also an infinite post
critical set yielding a covariant curve which is not algebraic (transcendent).
For two of the birational mappings considered, the post critical set is not
infinite and we claim that there is no algebraic covariant curve and no
preserved meromorphic two-form. For these two mappings with non infinite post
critical sets, attracting sets occur and we show that they pass the usual tests
(Lyapunov exponents and the fractal dimension) for being strange attractors.
The strange attractor of one of these two mappings is unbounded.Comment: 26 pages, 11 figure
- âŠ