10,761 research outputs found

    A renormalization approach for the 2D Anderson model at the band edge: Scaling of the localization volume

    Full text link
    We study the localization volumes VV (participation ratio) of electronic wave functions in the 2d-Anderson model with diagonal disorder. Using a renormalization procedure, we show that at the band edges, i.e. for energies E±4E\approx \pm 4, VV is inversely proportional to the variance \var of the site potentials. Using scaling arguments, we show that in the neighborhood of E=±4E=\pm 4, VV scales as V=\var^{-1}g((4-\ve E\ve)/\var) with the scaling function g(x)g(x). Numerical simulations confirm this scaling ansatz

    Pore opening effects and transport diffusion in the Knudsen regime in comparison to self- (or tracer-) diffusion

    Full text link
    We study molecular diffusion in linear nanopores with different types of roughness in the so-called Knudsen regime. Knudsen diffusion represents the limiting case of molecular diffusion in pores, where mutual encounters of the molecules within the free pore space may be neglected and the time of flight between subsequent collisions with the pore walls significantly exceeds the interaction time between the pore wall and the molecules. We present an extension of a commonly used procedure to calculate transport diffusion coefficients. Our results show that using this extension, the coefficients of self- and transport diffusion in the Knudsen regime are equal for all regarded systems, which improves previous literature data.Comment: 5 pages, 7 figure

    Nonlinear Galactic Dynamos and the Magnetic Pitch Angle

    Get PDF
    Pitch angles pp of the large-scale magnetic fields B\overline{\bf{\it{B}}} of spiral galaxies have previously been inferred from observations to be systematically larger in magnitude than predicted by standard mean-field dynamo theory. This discrepancy is more pronounced if dynamo growth has saturated, which is reasonable to assume given that such fields are generally inferred to be close to energy equipartition with the interstellar turbulence. This 'pitch angle problem' is explored using local numerical mean-field dynamo solutions as well as asymptotic analytical solutions. It is first shown that solutions in the saturated or kinematic regimes depend on only five dynamo parameters, two of which are tightly constrained by observations of galaxy rotation curves. The remaining 3-dimensional (dimensionless) parameter space can be constrained to some extent using theoretical arguments. Predicted values of p|p| can be as large as 40\sim40^\circ, which is similar to the largest values inferred from observations, but only for a small and non-standard region of parameter space. We argue, based on independent evidence, that such non-standard parameter values are plausible. However, these values are located toward the boundary of the allowed parameter space, suggesting that additional physical effects may need to be incorporated. We therefore suggest possible directions for extending the basic model considered.Comment: 11 pages, 5 figures, 1 table, edited to match ApJ versio

    Electron muon identification by atmospheric shower and electron beam in a new concept of an EAS detector

    Full text link
    We present results demonstrating the time resolution and μ\mu/e separation capabilities with a new concept of an EAS detector capable for measurements of cosmic rays arriving with large zenith angles. This kind of detector has been designed to be a part of a large area (several square kilometers) surface array designed to measure Ultra High Energy (10-200 PeV) τ\tau neutrinos using the Earth-skimming technique. A criteria to identify electron-gammas is also shown and the particle identification capability is tested by measurements in coincidence with the KASKADE-GRANDE experiment in Karlsruhe, Germany.Comment: accepted by Astrophysical Journal on January 12 2015, 16 pages 3 Figure

    Entry, Multinational Firms, and Exchange Rate Volatility

    Get PDF
    Recent discussions of exchange rate determination have emphasized the possible role of foreign direct investment in influencing exchange rate behavior. Yet, there are few existing models of multinational enterprises (MNEs) and endogenous exchange rates. This paper demonstrates that the entry decisions of MNEs can influence the volatility of the real exchange rate in countries were there are significant costs involved in maintaining production facilities, even when prices are perfectly flexible. For empirically plausible parameters, MNE activity can make the exchange rate much more volatile than relative consumption.exchange rate volatility, foreign direct investment, market entry

    Franck-Condon factors and observed band strength distribution in the vibrational structure of the Ag_2 D-X band system

    Get PDF
    Potential curves for the X_1Σ_g^+ and D_1Σ_u^+ states of three diatomic silver isotopomers, ^(107)Ag_2, ^(107)Ag^(109)Ag and ^(109)Ag_2, were determined from the best available molecular constants by the Rydberg-Klein-Rees method. From these potentials, Franck-Condon factors and band-origin wave numbers were computed, and the reliability of the obtained values was verified by comparison with the observed band strength distribution and the measured band origin positions in a previously recorded D-X spectrum. The ratios of the Franck-Condon factors to those of corresponding isotopic bands were found to be very close to unity, revealing only a very small isotopic effect on the Franck Condon factors of Ag_2 D-X bands. The isotopic shifts of the calculated band origins agree well with previously measured displacements of band heads

    Shift factor-based SCOPF topology control MIP formulations with substation configurations

    Full text link
    Topology control (TC) is an effective tool for managing congestion, contingency events, and overload control. The majority of TC research has focused on line and transformer switching. Substation reconfiguration is an additional TC action, which consists of opening or closing breakers not in series with lines or transformers. Some reconfiguration actions can be simpler to implement than branch opening, seen as a less invasive action. This paper introduces two formulations that incorporate substation reconfiguration with branch opening in a unified TC framework. The first method starts from a topology with all candidate breakers open, and breaker closing is emulated and optimized using virtual transactions. The second method takes the opposite approach, starting from a fully closed topology and optimizing breaker openings. We provide a theoretical framework for both methods and formulate security-constrained shift factor MIP TC formulations that incorporate both breaker and branch switching. By maintaining the shift factor formulation, we take advantage of its compactness, especially in the context of contingency constraints, and by focusing on reconfiguring substations, we hope to provide system operators additional flexibility in their TC decision processes. Simulation results on a subarea of PJM illustrate the application of the two formulations to realistic systems.The work was supported in part by the Advanced Research Projects Agency-Energy, U.S. Department of Energy, under Grant DE-AR0000223 and in part by the U.S. National Science Foundation Emerging Frontiers in Research and Innovation under Grant 1038230. Paper no. TPWRS-01497-2015. (DE-AR0000223 - Advanced Research Projects Agency-Energy, U.S. Department of Energy; 1038230 - U.S. National Science Foundation Emerging Frontiers in Research and Innovation)http://buprimo.hosted.exlibrisgroup.com/primo_library/libweb/action/openurl?date=2017&issue=2&isSerivcesPage=true&spage=1179&dscnt=2&url_ctx_fmt=null&vid=BU&volume=32&institution=bosu&issn=0885-8950&id=doi:10.1109/TPWRS.2016.2574324&dstmp=1522778516872&fromLogin=truePublished versio
    corecore