2,462 research outputs found
First operation of a liquid Argon TPC embedded in a magnetic field
We have operated for the first time a liquid Argon TPC immersed in a magnetic
field up to 0.55 T. We show that the imaging properties of the detector are not
affected by the presence of the magnetic field. The magnetic bending of the
ionizing particle allows to discriminate their charge and estimate their
momentum. These figures were up to now not accessible in the non-magnetized
liquid Argon TPC.Comment: 9 pages, 3 figure
Feasibility of high-voltage systems for a very long drift in liquid argon TPCs
Designs of high-voltage (HV) systems for creating a drift electric field in
liquid argon TPCs are reviewed. In ongoing experiments systems capable of
approx. 100 kV are realised for a drift field of 0.5-1 kV/cm over a length of
up to 1.5 m. Two of them having different approaches are presented: (1) the
ICARUS-T600 detector having a system consisting of an external power supply, HV
feedthroughs and resistive voltage degraders and (2) the ArDM-1t detector
having a cryogenic Greinacher HV multiplier inside the liquid argon volume. For
a giant scale liquid argon TPC, a system providing 2 MV may be required to
attain a drift length of approx. 20 m. Feasibility of such a system is
evaluated by extrapolating the existing designs.Comment: 8 pages, 13 figures, to appear in Proc. of 1st International Workshop
towards the Giant Liquid Argon Charge Imaging Experiment (GLA2010), Tsukuba
(Japan), March 201
Conceptual design of a scalable multi-kton superconducting magnetized liquid Argon TPC
We discuss the possibility of new generation neutrino and astroparticle
physics experiments exploiting a superconducting magnetized liquid Argon Time
Projection Chamber (LAr TPC). The possibility to complement the features of the
LAr TPC with those provided by a magnetic field has been considered in the past
and has been shown to open new physics opportunities, in particular in the
context of a neutrino factory. The experimental operation of a magnetized 10 lt
LAr TPC prototype has been recently demonstrated. From basic proof of
principle, the main challenge to be addressed is the possibility to magnetize a
very large volume of Argon, corresponding to 10 kton or more, for future
neutrino physics applications. In this paper we present one such conceptual
design.Comment: 4 pages, 1 figure, invited talk at 7th International Workshop on
Neutrino Factories and Superbeams (NUFACT05), LNF, Frascati (Rome
- …