6 research outputs found

    CB 1 Receptor Autoradiographic Characterization of the Individual Differences in Approach and Avoidance Motivation

    Get PDF
    Abstract Typically, approach behaviour is displayed in the context of moving towards a desired goal, while avoidance behaviour is displayed in the context of moving away from threatening or novel stimuli. In the current research, we detected three subpopulations of C57BL/6J mice that spontaneously responded with avoiding, balancing or approaching behaviours in the presence of the same conflicting stimuli. While the balancing animals reacted with balanced responses between approach and avoidance, the avoiding or approaching animals exhibited inhibitory or advance responses towards one of the conflicting inputs, respectively. Individual differences in approach and avoidance motivation might be modulated by the normal variance in the level of functioning of different systems, such as endocannabinoid system (ECS). The present research was aimed at analysing the ECS involvement on approach and avoidance behavioural processes. To this aim, in the three selected sub-populations of mice that exhibited avoiding or balancing or approaching responses in an approach/ avoidance Y-maze we analysed density and functionality of CB 1 receptors as well as enzyme fatty acid amide hydrolase activity in different brain regions, including the networks functionally responsible for emotional and motivational control. The main finding of the present study demonstrates that in both approaching and avoiding animals higher CB 1 receptor density in the amygdaloidal centro-medial nuclei and in the hypothalamic ventro-medial nucleus was found when compared with the CB 1 receptor density exhibited by the balancing animals. The characterization of the individual differences to respond in a motivationally based manner is relevant to clarify how the individual differences in ECS activity are associated with differences in motivational and affective functioning

    Polyglycerol-opioid conjugate produces analgesia devoid of side effects

    Get PDF
    Novel painkillers are urgently needed. The activation of opioid receptors in peripheral inflamed tissue can reduce pain without central adverse effects such as sedation, apnoea, or addiction. Here, we use an unprecedented strategy and report the synthesis and analgesic efficacy of the standard opioid morphine covalently attached to hyperbranched polyglycerol (PG-M) by a cleavable linker. With its high-molecular weight and hydrophilicity, this conjugate is designed to selectively release morphine in injured tissue and to prevent blood-brain barrier permeation. In contrast to conventional morphine, intravenous PG-M exclusively activated peripheral opioid receptors to produce analgesia in inflamed rat paws without major side effects such as sedation or constipation. Concentrations of morphine in the brain, blood, paw tissue, and in vitro confirmed the selective release of morphine in the inflamed milieu. Thus, PG-M may serve as prototype of a peripherally restricted opioid formulation designed to forego central and intestinal side effects

    Miscible Polymer Blends

    No full text
    corecore