746 research outputs found

    Classification of three-body quantum halos

    Full text link
    The different kinds of behaviour of three-body systems in the weak binding limit are classified with specific attention to the transition from a true three-body system to an effective two-body system. For weakly bound Borromean systems approaching the limit of binding we show that the size-binding energy relation is an almost universal function of the three s-wave scattering lengths measured in units of a hyperradial scaling parameter defined as a mass weighted average of two-body equivalent square well radii. We explain why three-body halos follow this curve and why systems appearing above reveal two-body substructures. Three-body quantum halos 2-3 times larger than the limit set by zero hypermoment are possible

    Assessing the accuracy of Hartree-Fock-Bogoliubov calculations by use of mass relations

    Full text link
    The accuracy of three different sets of Hartree-Fock-Bogoliubov calculations of nuclear binding energies is systematically evaluated. To emphasize minor fluctuations, a second order, four-point mass relation, which almost completely eliminates smooth aspects of the binding energy, is introduced. Applying this mass relation yields more scattered results for the calculated binding energies. By examining the Gaussian distributions of the non-smooth aspects which remain, structural differences can be detected between measured and calculated binding energies. Substructures in regions of rapidly changing deformation, specifically around (N,Z)=(60,40)(N,Z)=(60,40) and (90,60)(90,60), are clearly seen for the measured values, but are missing from the calculations. A similar three-point mass relation is used to emphasize odd-even effects. A clear decrease with neutron excess is seen continuing outside the experimentally known region for the calculations.Comment: 13 pages, 9 figures, published versio

    The size of two-body weakly bound objects : short versus long range potentials

    Get PDF
    The variation of the size of two-body objects is investigated, as the separation energy approaches zero, with both long range potentials and short range potentials having a repulsive core. It is shown that long range potentials can also give rise to very extended systems. The asymptotic laws derived for states with angular momentum l=1,2 differ from the ones obtained with short range potentials. The sensitivity of the asymptotic laws on the shape and length of short range potentials defined by two and three parameters is studied. These ideas as well as the transition from the short to the long range regime for the l=0 case are illustrated using the Kratzer potential.Comment: 5 pages, 3 figures, submitted to Physical Review Letter

    Higher-order Brunnian structures and possible physical realizations

    Full text link
    We consider few-body bound state systems and provide precise definitions of Borromean and Brunnian systems. The initial concepts are more than a hundred years old and originated in mathematical knot-theory as purely geometric considerations. About thirty years ago they were generalized and applied to the binding of systems in nature. It now appears that recent generalization to higher order Brunnian structures may potentially be realized as laboratory made or naturally occurring systems. With the binding energy as measure, we discuss possibilities of physical realization in nuclei, cold atoms, and condensed matter systems. Appearance is not excluded. However, both the form and the strengths of the interactions must be rather special. The most promising subfields for present searches would be in cold atoms because of external control of effective interactions, or perhaps in condensed-matter systems with non-local interactions. In nuclei, it would only be by sheer luck due to a lack of tunability.Comment: 8 pages, 5 figures, revised versio

    Nuclear halo and its scaling laws

    Full text link
    We have proposed a procedure to extract the probability for valence particle being out of the binding potential from the measured nuclear asymptotic normalization coefficients. With this procedure, available data regarding the nuclear halo candidates are systematically analyzed and a number of halo nuclei are confirmed. Based on these results we have got a much relaxed condition for nuclear halo occurrence. Furthermore, we have presented the scaling laws for the dimensionless quantity /R2/R^{2} of nuclear halo in terms of the analytical expressions of the expectation value for the operator r2r^{2} in a finite square-well potential.Comment: 14 pages, 3 figure
    corecore