45 research outputs found

    Выбор оптимального рабочего вектора эксплуатируемых систем методами математического программирования

    Get PDF
    The current state of the development of a laser based process chain for manufacturing fused silica optics is presented. In a first step fused silica is ablated with laser radiation to produce the geometry of the optics. A subsequent polishing step reduces the surface roughness and a third step uses micro ablation to remove the last remaining redundant material. Although the process chain is still under development, the ablation of fused silica already reaches ablation rates above 20 mm3/s with a resulting surface roughness of Ra < 5 ?m and the polishing process is able to significantly reduce this roughness

    The constructive use of images in medical teaching: a literature review

    Get PDF
    This literature review illustrates the various ways images are used in teaching and the evidence appertaining to it and advice regarding permissions and use. Four databases were searched, 23 papers were retained out of 135 abstracts found for the study. Images are frequently used to motivate an audience to listen to a lecture or to note key medical findings. Images can promote observation skills when linked with learning outcomes, but the timing and relevance of the images is important – it appears they must be congruent with the dialogue. Student reflection can be encouraged by asking students to actually draw their own impressions of a course as an integral part of course feedback. Careful structured use of images improve attention, cognition, reflection and possibly memory retention

    Oxidant-NO dependent gene regulation in dogs with type I diabetes: impact on cardiac function and metabolism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mechanisms responsible for the cardiovascular mortality in type I diabetes (DM) have not been defined completely. We have shown in conscious dogs with DM that: <it>1</it>) baseline coronary blood flow (CBF) was significantly decreased, <it>2</it>) endothelium-dependent (ACh) coronary vasodilation was impaired, and <it>3</it>) reflex cholinergic NO-dependent coronary vasodilation was selectively depressed. The most likely mechanism responsible for the depressed reflex cholinergic NO-dependent coronary vasodilation was the decreased bioactivity of NO from the vascular endothelium. The goal of this study was to investigate changes in cardiac gene expression in a canine model of alloxan-induced type 1 diabetes.</p> <p>Methods</p> <p>Mongrel dogs were chronically instrumented and the dogs were divided into two groups: one normal and the other diabetic. In the diabetic group, the dogs were injected with alloxan monohydrate (40-60 mg/kg iv) over 1 min. The global changes in cardiac gene expression in dogs with alloxan-induced diabetes were studied using Affymetrix Canine Array. Cardiac RNA was extracted from the control and DM (n = 4).</p> <p>Results</p> <p>The array data revealed that 797 genes were differentially expressed (P < 0.01; fold change of at least ±2). 150 genes were expressed at significantly greater levels in diabetic dogs and 647 were significantly reduced. There was no change in eNOS mRNA. There was up regulation of some components of the NADPH oxidase subunits (gp91 by 2.2 fold, P < 0.03), and down-regulation of SOD1 (3 fold, P < 0.001) and decrease (4 - 40 fold) in a large number of genes encoding mitochondrial enzymes. In addition, there was down-regulation of Ca<sup>2+ </sup>cycling genes (ryanodine receptor; SERCA2 Calcium ATPase), structural proteins (actin alpha). Of particular interests are genes involved in glutathione metabolism (glutathione peroxidase 1, glutathione reductase and glutathione S-transferase), which were markedly down regulated.</p> <p>Conclusion</p> <p>our findings suggest that type I diabetes might have a direct effect on the heart by impairing NO bioavailability through oxidative stress and perhaps lipid peroxidases.</p

    Entropy and Complexity Analyses in Alzheimer’s Disease: An MEG Study

    Get PDF
    Alzheimer’s disease (AD) is one of the most frequent disorders among elderly population and it is considered the main cause of dementia in western countries. This irreversible brain disorder is characterized by neural loss and the appearance of neurofibrillary tangles and senile plaques. The aim of the present study was the analysis of the magnetoencephalogram (MEG) background activity from AD patients and elderly control subjects. MEG recordings from 36 AD patients and 26 controls were analyzed by means of six entropy and complexity measures: Shannon spectral entropy (SSE), approximate entropy (ApEn), sample entropy (SampEn), Higuchi’s fractal dimension (HFD), Maragos and Sun’s fractal dimension (MSFD), and Lempel-Ziv complexity (LZC). SSE is an irregularity estimator in terms of the flatness of the spectrum, whereas ApEn and SampEn are embbeding entropies that quantify the signal regularity. The complexity measures HFD and MSFD were applied to MEG signals to estimate their fractal dimension. Finally, LZC measures the number of different substrings and the rate of their recurrence along the original time series. Our results show that MEG recordings are less complex and more regular in AD patients than in control subjects. Significant differences between both groups were found in several brain regions using all these methods, with the exception of MSFD (p-value < 0.05, Welch’s t-test with Bonferroni’s correction). Using receiver operating characteristic curves with a leave-one-out cross-validation procedure, the highest accuracy was achieved with SSE: 77.42%. We conclude that entropy and complexity analyses from MEG background activity could be useful to help in AD diagnosis

    Development of a laser based process chain for manufacturing free form optics

    No full text
    This paper presents the development of a laser based process chain for manufacturing fused silica optics. Due to disadvantages of conventional methods concerning costs and time when manufacturing optics with nonspherical shape, this process chain focuses on aspherical and free form surface geometries, but it is also capable of producing spherical optics. It consists of three laser based processing steps, which in combination produce the optics. In a first step, fused silica is ablated with laser radiation to produce the geometry of the optics. A subsequent laser polishing step reduces the surface roughness and a third step uses laser micro ablation to remove the last remaining redundant material. Most of the conducted experiments are carried out using CO 2 laser radiation, but it is also possible to ablate material with ultra short pulse laser radiation. Besides describing the experimental setup and the mechanisms of the ablation and polishing step, the paper presents and discusses results achieved to date. Although the process chain is still under development, the single process steps already reach promising results for themselves and moreover, first elements are manufactured using the first two process steps together

    Thermo-Optical (TOP) analysis of transmissive elements for laser systems

    No full text
    Increasing laser beam qualities make thermal lensing again a hot topic and demand for a thermo-optical simulation for improving classical ray tracing and enabling optimization possibilities for thermally aberrated optical systems. This paper summarizes the approach for coupling FEM and ray tracing using a weighted least squares approximation algorithm and demonstrates the abilities of the coupled simulation in the case of a CO2 laser system for polishing of glass and plastics. It can be demonstrated that the algorithm can be used for the analysis of higher order aberrations, since the application contains a Gaussian to top-hat conversion lens group which suffers from thermal gradients. Finally, the benefits and further developments of analyzing thermal gradients in optical simulation are being discussed
    corecore