110 research outputs found

    Analogue model for anti-de Sitter as a description of point sources in fluids

    Get PDF
    We introduce an analogue model for a nonglobally hyperbolic spacetime in terms of a two-dimensional fluid. This is done by considering the propagation of sound waves in a radial flow with constant velocity. We show that the equation of motion satisfied by sound waves is the wave equation on AdS2×S1AdS_2\times S^1. Since this spacetime is not globally hyperbolic, the dynamics of the Klein-Gordon field is not well defined until boundary conditions at the spatial boundary of AdS2AdS_2 are prescribed. On the analogue model end, those extra boundary conditions provide an effective description of the point source at r=0r=0. For waves with circular symmetry, we relate the different physical evolutions to the phase difference between ingoing and outgoing scattered waves. We also show that the fluid configuration can be stable or unstable depending on the chosen boundary condition.Comment: 6 pages, 1 figure. To appear in Phys Rev

    Challenging the weak cosmic censorship conjecture with charged quantum particles

    Get PDF
    Motivated by the recent attempts to violate the weak cosmic censorship conjecture for near-extreme black-holes, we consider the possibility of overcharging a near-extreme Reissner-Nordstr\"om black hole by the quantum tunneling of charged particles. We consider the scattering of spin-0 and spin-1/2 particles by the black hole in a unified framework and obtain analytically, for the first time, the pertinent reflection and transmission coefficients without any small charge approximation. Based on these results, we propose some gedanken experiments that could lead to the violation of the weak cosmic censorship conjecture due to the (classically forbidden) absorption of small energy charged particles by the black hole. As for the case of scattering in Kerr spacetimes, our results demonstrate explicitly that scalar fields are subject to (electrical) superradiance phenomenon, while spin-1/2 fields are not. Superradiance impose some limitations on the gedanken experiments involving spin-0 fields, favoring, in this way, the mechanisms for creation of a naked singularity by the quantum tunneling of spin-1/2 charged fermions. We also discuss the implications that vacuum polarization effects and quantum statistics might have on these gedanken experiments. In particular, we show that they are not enough to prevent the absorption of incident small energy particles and, consequently, the formation of a naked singularity.Comment: 9 pages; Final version to appear in PR

    Rotational superradiant scattering in a vortex flow

    Get PDF
    When an incident wave scatters off of an obstacle, it is partially reflected and partially transmitted. In theory, if the obstacle is rotating, waves can be amplified in the process, extracting energy from the scatterer. Here we describe in detail the first laboratory detection of this phenomenon, known as superradiance 1, 2, 3, 4. We observed that waves propagating on the surface of water can be amplified after being scattered by a draining vortex. The maximum amplification measured was 14% ± 8%, obtained for 3.70 Hz waves, in a 6.25-cm-deep fluid, consistent with the superradiant scattering caused by rapid rotation. We expect our experimental findings to be relevant to black-hole physics, since shallow water waves scattering on a draining fluid constitute an analogue of a black hole 5, 6, 7, 8, 9, 10, as well as to hydrodynamics, due to the close relation to over-reflection instabilities 11, 12, 13

    Can quantum mechanics fool the cosmic censor?

    Full text link
    We revisit the mechanism for violating the weak cosmic-censorship conjecture (WCCC) by overspinning a nearly-extreme charged black hole. The mechanism consists of an incoming massless neutral scalar particle, with low energy and large angular momentum, tunneling into the hole. We investigate the effect of the large angular momentum of the incoming particle on the background geometry and address recent claims that such a back-reaction would invalidate the mechanism. We show that the large angular momentum of the incident particle does not constitute an obvious impediment to the success of the overspinning quantum mechanism, although the induced back-reaction turns out to be essential to restoring the validity of the WCCC in the classical regime. These results seem to endorse the view that the "cosmic censor" may be oblivious to processes involving quantum effects.Comment: 5 pages, to appear as a Rapid Communication in Phys. Rev.

    Detecting rotational superradiance in fluid laboratories

    Get PDF
    Rotational superradiance was predicted theoretically decades ago, and is chiefly responsible for a number of important effects and phenomenology in black-hole physics. However, rotational superradiance has never been observed experimentally. Here, with the aim of probing superradiance in the lab, we investigate the behavior of sound and surface waves in fluids resting in a circular basin at the center of which a rotating cylinder is placed. We show that with a suitable choice for the material of the cylinder, surface and sound waves are amplified. Two types of instabilities are studied: one sets in whenever superradiant modes are confined near the rotating cylinder and the other, which does not rely on confinement, corresponds to a local excitation of the cylinder. Our findings are experimentally testable in existing fluid laboratories and, hence, offer experimental exploration and comparison of dynamical instabilities arising from rapidly rotating boundary layers in astrophysical as well as in fluid dynamical systems

    Targeting cyclooxygenase by indomethacin decelerates progression of acute lymphoblastic leukemia in a xenograft model.

    Get PDF
    Acute lymphoblastic leukemia (ALL) develops in the bone marrow in the vicinity of stromal cells known to promote tumor development and treatment resistance. We previously showed that the cyclooxygenase (COX) inhibitor indomethacin prevents the ability of stromal cells to diminish p53-mediated killing of cocultured ALL cells in vitro, possibly by blocking the production of prostaglandin E2 (PGE2). Here, we propose that PGE2 released by bone marrow stromal cells might be a target for improved treatment of pediatric ALL. We used a xenograft model of human primary ALL cells in nonobese diabetic-scid IL2rγnull mice to show that indomethacin delivered in the drinking water delayed the progression of ALL in vivo. The progression was monitored by noninvasive in vivo imaging of the engrafted leukemic cells, as well as by analyses of CD19+CD10+ leukemic blasts present in spleen or bone marrow at the termination of the experiments. The indomethacin treatment increased the level of p53 in the leukemic cells, implying that COX inhibition might reduce progression of ALL by attenuating protective paracrine PGE2 signaling from bone marrow stroma to leukemic cells

    Synchronous frequencies of extremal Kerr black holes: Resonances, scattering, and stability

    Get PDF
    The characteristic damping times of the natural oscillations of a Kerr black hole become arbitrarily large as the extremal limit is approached. This behavior is associated with the so-called zero damped modes (ZDMs), and suggests that extremal black holes are characterized by quasinormal modes whose frequencies are purely real. Since these frequencies correspond to oscillations whose angular phase velocity matches the horizon angular velocity of the black hole, they are sometimes called "synchronous frequencies." Several authors have studied the ZDMs for near-extremal black holes. Recently, their correspondence to branch points of the Green's function of the wave equation was linked to the Aretakis instability of extremal black holes. Here we investigate the existence of ZDMs for extremal black holes, showing that these real-axis resonances of the field are unphysical as natural black hole oscillations: the corresponding frequency is always associated with a scattering mode. By analyzing the behavior of these modes near the event horizon we obtain new insight into the transition to extremality, including a simple way to understand the Aretakis instability

    Test of the weak cosmic censorship conjecture with a charged scalar field and dyonic Kerr-Newman black holes

    Full text link
    A thought experiment considered recently in the literature, in which it is investigated whether a dyonic Kerr-Newman black hole can be destroyed by overcharging or overspinning it past extremality by a massive complex scalar test field, is revisited. Another derivation of the result that this is not possible, i.e. the weak cosmic censorship is not violated in this thought experiment, is given. The derivation is based on conservation laws, on a null energy condition, and on specific properties of the metric and the electromagnetic field of dyonic Kerr-Newman black holes. The metric is kept fixed, whereas the dynamics of the electromagnetic field is taken into account. A detailed knowledge of the solutions of the equations of motion is not needed. The approximation in which the electromagnetic field is fixed is also considered, and a derivation for this case is also given. In addition, an older version of the thought experiment, in which a pointlike test particle is used, is revisited. The same result, namely the non-violation of the cosmic censorship, is rederived in a way which is simpler than in earlier works.Comment: 18 pages, LaTe
    corecore