439 research outputs found
Electrical Noise From Phase Separation In Pr2/3Ca1/3MnO3 Single Crystal
Low frequency electrical noise measurements have been used to probe the
electronic state of the perovskite-type manganese oxide Pr2/3Ca1/3MnO3 versus
temperature and in the vicinity of the field-induced transition from the
insulating, charge-ordered state (I-CO) to the metallic, ferromagnetic state
(M-F). At high temperature we have observed a high level of the excess noise
with mainly a gaussian distribution of the resistance fluctuations, and the
associated power spectral density has a standard 1/f dependence. However, in
the hysteretic region, where the electrical resistance depends dramatically on
the sample history, we have observed a huge non-gaussian noise characterized by
two level fluctuator-like switching (TLS) in the time domain. We discuss the
origin of the noise in terms of percolative behavior of the conductivity. We
speculate that the dominant fluctuators are manganese clusters switching
between the M-F and the I-CO phases.Comment: RevTeX, 6 pages with 3 figure
Precision microwave dielectric and magnetic susceptibility measurements of correlated electronic materials using superconducting cavities
We analyze microwave cavity perturbation methods, and show that the technique
is an excellent, precision method to study the dynamic magnetic and dielectric
response in the frequency range. Using superconducting cavities, we
obtain exceptionally high precision and sensitivity for measurements of
relative changes. A dynamic electromagnetic susceptibility
is introduced, which
is obtained from the measured parameters: the shift of cavity resonant
frequency and quality factor . We focus on the case of a
spherical sample placed at the center of a cylindrical cavity resonant in the
mode. Depending on the sample characteristics, the magnetic
permeability , the dielectric permittivity and
the complex conductivity can be extracted from
. A full spherical wave analysis of the cavity perturbation
is given. This analysis has led to the observation of new phenomena in novel
low dimensional materials.Comment: 16 pages, 5 figure
Inversion symmetry in the spin-Peierls compound NaV2O5
At room-temperature NaV2O5 was found to have the centrosymmetric space group
Pmmn. This space group implies the presence of only one kind of V site in
contrast with previous reports of the non-centrosymmetric counterpart P21mn.
This indicates a non-integer valence state of vanadium.
Furthermore, this symmetry has consequences for the interpretation of the
transition at 34 K, which was ascribed to a spin-Peierls transition of one
dimensional chains of V4+.Comment: Revtex, 3 pages, 2 postscript pictures embedded in the text.
Corrected a mistake in one pictur
Amorphous ferromagnetism and re-entrant magnetic glassiness in SmMoO: new insights into the electronic phase diagram of pyrochlore molybdates
We discuss the magnetic properties of a SmMoO single
crystal as investigated by means of different experimental techniques. In the
literature, a conventional itinerant ferromagnetic state is reported for the
Mo sublattice below K. However, our results of dc
magnetometry, muon spin spectroscopy (SR) and high-harmonics magnetic
ac susceptibility unambiguously evidence highly disordered conditions in this
phase, in spite of the crystalline and chemical order. This disordered magnetic
state shares several common features with amorphous ferromagnetic alloys. This
scenario for SmMoO is supported by the anomalously high
values of the critical exponents, as mainly deduced by a scaling analysis of
our dc magnetization data and confirmed by the other techniques. Moreover,
SR detects a significant static magnetic disorder at the microscopic
scale. At the same time, the critical divergence of the third-harmonic
component of the ac magnetic susceptibility around K leads to
additional evidence towards the glassy nature of this magnetic phase. Finally,
the longitudinal relaxation of spin polarization (also supported by
results of ac susceptibility) evidences re-entrant glassy features similar to
amorphous ferromagnets.Comment: 15 pages, 13 figure
Does EELS haunt your photoemission measurements?
It has been argued in a recent paper by R. Joynt (R. Joynt, Science 284, p
777 (1999)) that in the case of poorly conducting solids the photoemission
spectrum close to the Fermi Energy may be strongly influenced by extrinsic loss
processes similar to those occurring in High Resolution Electron Energy Loss
Spectroscopy (HR-EELS), thereby obscuring information concerning the density of
states or one electron Green's function sought for. In this paper we present a
number of arguments, both theoretical and experimental, that demonstrate that
energy loss processes occurring once the electron is outside the solid,
contribute only weakly to the spectrum and can in most cases be either
neglected or treated as a weak structureless background.Comment: 6 pages, figures included. Submitted to PR
- …