2,942 research outputs found
Unidirectional mechanical amplification as a design principle for an active microphone
Amplification underlies the operation of many biological and engineering
systems. Simple electrical, optical, and mechanical amplifiers are reciprocal:
the backward coupling of the output to the input equals the forward coupling of
the input to the output. Unidirectional amplifiers that occur often in
electrical and optical systems are special non-reciprocal devices in which the
output does not couple back to the input even though the forward coupling
persists. Here we propose a scheme for unidirectional mechanical amplification
that we utilize to construct an active microphone. We show that amplification
improves the microphone's threshold for detecting weak signals and that
unidirectionality prevents distortion.Comment: 4 pages, 3 figures plus supplementary informatio
Discrimination of low-frequency tones employs temporal fine structure
An auditory neuron can preserve the temporal fine structure of a
low-frequency tone by phase-locking its response to the stimulus. Apart from
sound localization, however, little is known about the role of this temporal
information for signal processing in the brain. Through psychoacoustic studies
we provide direct evidence that humans employ temporal fine structure to
discriminate between frequencies. To this end we construct tones that are based
on a single frequency but in which, through the concatenation of wavelets, the
phase changes randomly every few cycles. We then test the frequency
discrimination of these phase-changing tones, of control tones without phase
changes, and of short tones that consist of a single wavelets. For carrier
frequencies below a few kilohertz we find that phase changes systematically
worsen frequency discrimination. No such effect appears for higher carrier
frequencies at which temporal information is not available in the central
auditory system.Comment: 12 pages, 3 figure
Note on clock synchronization and Edwards transformations
Edwards transformations relating inertial frames with arbitrary clock
synchronization are reminded and put in more general setting. Their group
theoretical context is described.Comment: 11 pages, no figures; final version, to appear in Foundations of
Physics Letter
Uncertainties inherent in the decomposition of a Transformation
This contribution adds to the points on the <indeterminacy of special
relativity> made by De Abreu and Guerra. We show that the Lorentz
Transformation can be composed by the physical observations made in a frame K
of events in a frame K-prime viz i) objects in K-prime are moving at a speed v
relative to K, ii) distances and time intervals measured by K-prime are at
variance with those measured by K and iii) the concept of simultaneity is
different in K-prime compared to K. The order in which the composition is
executed determines the nature of the middle aspect (ii). This essential
uncertainty of the theory can be resolved only by a universal synchronicity as
discussed in [1] based on the unique frame in which the one way speed of light
is constant in all directions.Comment: 10 pages including an appendix. Published in the European Journal of
Physics as a Comment. Eur. J. Phys. 29 (2008) L13-L1
Dual contribution to amplification in the mammalian inner ear
The inner ear achieves a wide dynamic range of responsiveness by mechanically
amplifying weak sounds. The enormous mechanical gain reported for the mammalian
cochlea, which exceeds a factor of 4,000, poses a challenge for theory. Here we
show how such a large gain can result from an interaction between amplification
by low-gain hair bundles and a pressure wave: hair bundles can amplify both
their displacement per locally applied pressure and the pressure wave itself. A
recently proposed ratchet mechanism, in which hair-bundle forces do not feed
back on the pressure wave, delineates the two effects. Our analytical
calculations with a WKB approximation agree with numerical solutions.Comment: 4 pages, 4 figure
Simultaneity as an Invariant Equivalence Relation
This paper deals with the concept of simultaneity in classical and
relativistic physics as construed in terms of group-invariant equivalence
relations. A full examination of Newton, Galilei and Poincar\'e invariant
equivalence relations in is presented, which provides alternative
proofs, additions and occasionally corrections of results in the literature,
including Malament's theorem and some of its variants. It is argued that the
interpretation of simultaneity as an invariant equivalence relation, although
interesting for its own sake, does not cut in the debate concerning the
conventionality of simultaneity in special relativity.Comment: Some corrections, mostly of misprints. Keywords: special relativity,
simultaneity, invariant equivalence relations, Malament's theore
Coexistence in a One-Dimensional Cyclic Dominance Process
Cyclic (rock-paper-scissors-type) population models serve to mimic complex
species interactions. Focusing on a paradigmatic three-species model with
mutations in one dimension, we observe an interplay between equilibrium and
non-equilibrium processes in the stationary state. We exploit these insights to
obtain asymptotically exact descriptions of the emerging reactive steady state
in the regimes of high and low mutation rates. The results are compared to
stochastic lattice simulations. Our methods and findings are potentially
relevant for the spatio-temporal evolution of other non-equilibrium stochastic
processes.Comment: 4 pages, 4 figures and 2 pages of Supplementary Material. To appear
in Physical Review
Traffic jams induced by rare switching events in two-lane transport
We investigate a model for driven exclusion processes where internal states are assigned to the particles. The latter account for diverse situations, ranging from spin states in spintronics to parallel lanes in intracellular or vehicular traffic. Introducing a coupling between the internal states by allowing particles to switch from one to another induces an intriguing polarization phenomenon. In a mesoscopic scaling, a rich stationary regime for the density profiles is discovered, with localized domain walls in the density profile of one of the internal states being feasible. We derive the shape of the density profiles as well as resulting phase diagrams analytically by a mean-field approximation and a continuum limit. Continuous as well as discontinuous lines of phase transition emerge, their intersections induce multi-critical behaviour
- …
