5 research outputs found

    The in vitro susceptibility of Campylobacter spp. to the antibacterial effect of manuka honey

    No full text
    We report the antimicrobial effect of manuka honey against Campylobacter spp. isolated by a diagnostic laboratory from specimens from a community in New Zealand. The isolates were differentiated according to species level using multiplex PCR. C. jejuni (20 strains) and C. coli (7 strains) were identified. The clinical isolates identified and type culture collection strains of these species were subjected to testing to determine the minimum inhibitory concentration (MIC) of manuka honey using a microdilution technique. The MIC of the manuka honey against all of the Campylobacter tested was found to be around 1% (v/v) honey. The low MIC values suggest that honey might still inhibit the growth of campylobacteria after dilution by fluid in the gut, but the actual concentration of honey that can be achieved in the intestine is unknown. Therefore, clinical investigation is required to establish the efficacy of honey against Campylobacter spp. in the gut environment

    Putative mechanisms and biological role of coccoid form formation in Campylobacter jejuni.

    No full text
    In certain conditions Campylobacter jejuni cells are capable of changing their cell shape from a typically spiral to a coccoid form (CF). By similarity to other bacteria, the latter was initially considered to be a viable but non-culturable form capable of survival in unfavourable conditions. However, subsequent studies with C. jejuni and closely related bacteria Helicobacter pylori suggested that CF represents a non-viable, degenerative form. Until now, the issue on whether the CF of C. jejuni is viable and infective is highly controversial. Despite some preliminary experiments on characterization of CF cells, neither biochemical mechanisms nor genetic determinants involved in C. jejuni cell shape changes have been characterized. In this review, we highlight known molecular mechanisms and genes involved in CF formation in other bacteria. Since orthologous genes are also present in C. jejuni, we suggest that CF formation in these bacteria is also a regulated and genetically determined process. A possible significance of CF in the lifestyle of this important bacterial pathogen is discussed
    corecore