59 research outputs found
Fermi-LAT limits on the γ-ray opacity of the Universe
The Fermi Large Area Telescope (LAT) has provided us with a
rich sample of extragalactic sources, among which γ-ray blazars with redshift up to z ∼ 3 and Gamma-Ray Bursts with redshift up to z ∼ 4.3, that we have used to probe the interaction via pair production of γ-ray photons above 10GeV with low-energy photons from the Extragalactic Background Light (EBL). The EBL from the infrared to the ultraviolet is difficult to measure directly, but can be constrained with a variety of methods. In this paper we report the method applied to evaluate the EBL attenuation of γ-ray fluxes by comparing the measured energy spectrum
of the source and the unabsorbed spectrum above 10 GeV. We place upper limits on the γ-ray opacity of the Universe at various energies and redshifts, and compare this with predictions from well-known EBL models. We find that EBL intensities at optical-UV wavelengths as large as those predicted by the “baseline” and “fast evolution” models can be ruled out with high confidence. The ensuing upper limits
to the EBL opacity are presented
The characterization of the distant blazar GB6 J1239+0443 from flaring and low activity periods
In 2008 AGILE and Fermi detected gamma-ray flaring activity from the
unidentified EGRET source 3EG J1236+0457, recently associated with a flat
spectrum radio quasar GB6 J1239+0443 at z=1.762. The optical counterpart of the
gamma-ray source underwent a flux enhancement of a factor 15-30 in 6 years, and
of ~10 in six months. We interpret this flare-up in terms of a transition from
an accretion-disk dominated emission to a synchrotron-jet dominated one. We
analysed a Sloan Digital Sky Survey (SDSS) archival optical spectrum taken
during a period of low radio and optical activity of the source. We estimated
the mass of the central black hole using the width of the CIV emission line. In
our work, we have also investigated SDSS archival optical photometric data and
UV GALEX observations to estimate the thermal-disk emission contribution of GB6
J1239+0443. Our analysis of the gamma-ray data taken during the flaring
episodes indicates a flat gamma-ray spectrum, with an extension of up to 15
GeV, with no statistically-relevant sign of absorption from the broad line
region, suggesting that the blazar-zone is located beyond the broad line
region. This result is confirmed by the modeling of the broad-band spectral
energy distribution (well constrained by the available multiwavelength data) of
the flaring activity periods and by the accretion disk luminosity and black
hole mass estimated by us using archival data.Comment: 30 pages, 7 figures, 4 tables MNRAS Accepted on 2012 June 1
Search for massive rare particles with MACRO
Massive rare particles have been searched for in the penetrating cosmic
radiation using the MACRO apparatus at the Gran Sasso National Laboratories.
Liquid scintillators, streamer tubes and nuclear track detectors have been used
to search for magnetic monopoles (MMs).
Based on no observation of such signals, stringent flux limits are
established for MMs as slow as a few 10^(-5)c. The methods based on the
scintillator and on the nuclear track subdetectors were also applied to search
for nuclearites. Preliminary results of the searches for charged Q-balls are
also presented.Comment: 20 pages, 9 EPS figures included with epsfi
Fermi LAT Search for Photon Lines from 30 to 200 GeV and Dark Matter Implications
Dark matter (DM) particle annihilation or decay can produce monochromatic
-rays readily distinguishable from astrophysical sources. -ray
line limits from 30 GeV to 200 GeV obtained from 11 months of Fermi Large Area
Space Telescope data from 20-300 GeV are presented using a selection based on
requirements for a -ray line analysis, and integrated over most of the
sky. We obtain -ray line flux upper limits in the range , and give corresponding DM annihilation
cross-section and decay lifetime limits. Theoretical implications are briefly
discussed.Comment: 6 pages, 1 figure. Accepted for publication by The Physical Review
Letter
Measurement of the atmospheric neutrino-induced upgoing muon flux using MACRO
We present a measurement of the flux of neutrino-induced upgoing muons
(~100 GeV) using the MACRO detector. The ratio of the number of observed
to expected events integrated over all zenith angles is 0.74 +/- 0.036 (stat)
+/- 0.046(systematic) +/- 0.13 (theoretical). The observed zenith distribution
for -1.0 < cos(theta) < -0.1 does not fit well with the no oscillation
expectation, giving a maximum probability for chi^2 of 0.1%. The acceptance of
the detector has been extensively studied using downgoing muons, independent
analyses and Monte-Carlo simulations. The other systematic uncertainties cannot
be the source of the discrepancies between the data and expectations. We have
investigated whether the observed number of events and the shape of the zenith
distribution can be explained by a neutrino oscillation hypothesis. Fitting
either the flux or zenith distribution independently yields mixing parameters
of sin^2 (2theta)=1.0 and delta m^2 of a few times 10^-3 eV^2. However, the
observed zenith distribution does not fit well with any expectations giving a
maximum probability for chi^2 of 5% for the best oscillation hypothesis, and
the combined probability for the shape and number of events is 17%. We conclude
that these data favor a neutrino oscillation hypothesis, but with unexplained
structure in the zenith distribution not easily explained by either the
statistics or systematics of the experiment.Comment: 7 pages (two-column) with 4 figure
High energy cosmic ray physics with underground muons in MACRO. I. Analysis methods and experimental results
In this paper, the first of a two-part work, we present the reconstruction and measurement of muon events detected underground by the MACRO experiment at Gran Sasso (E у 1.3 TeV in atmosphere͒. The main aim of this work is to discuss the muon multiplicity distribution as measured in the detector. The data sample analyzed consists of 4.4ϫ10 6 muon events, of which ϳ 263 000 are multiple muons, corresponding to a total live time of 5850 h. In this sample, the observed multiplicities extend above N ϭ35, with intermuon separations up to 50 m and beyond. Additional complementing measurements, such as the inclusive muon flux, the angular distribution, and the muon separation distribution ͑decoherence͒, are also included. The physical interpretation of the results presented here is reported in the following companion paper. ͓S0556-2821͑97͒00615-2͔ PACS number͑s͒: 13.85. Tp, 96.40.De, 96.40.Tv, 98.70.S
- …