59 research outputs found

    Fermi-LAT limits on the γ-ray opacity of the Universe

    Get PDF
    The Fermi Large Area Telescope (LAT) has provided us with a rich sample of extragalactic sources, among which γ-ray blazars with redshift up to z ∼ 3 and Gamma-Ray Bursts with redshift up to z ∼ 4.3, that we have used to probe the interaction via pair production of γ-ray photons above 10GeV with low-energy photons from the Extragalactic Background Light (EBL). The EBL from the infrared to the ultraviolet is difficult to measure directly, but can be constrained with a variety of methods. In this paper we report the method applied to evaluate the EBL attenuation of γ-ray fluxes by comparing the measured energy spectrum of the source and the unabsorbed spectrum above 10 GeV. We place upper limits on the γ-ray opacity of the Universe at various energies and redshifts, and compare this with predictions from well-known EBL models. We find that EBL intensities at optical-UV wavelengths as large as those predicted by the “baseline” and “fast evolution” models can be ruled out with high confidence. The ensuing upper limits to the EBL opacity are presented

    The characterization of the distant blazar GB6 J1239+0443 from flaring and low activity periods

    Get PDF
    In 2008 AGILE and Fermi detected gamma-ray flaring activity from the unidentified EGRET source 3EG J1236+0457, recently associated with a flat spectrum radio quasar GB6 J1239+0443 at z=1.762. The optical counterpart of the gamma-ray source underwent a flux enhancement of a factor 15-30 in 6 years, and of ~10 in six months. We interpret this flare-up in terms of a transition from an accretion-disk dominated emission to a synchrotron-jet dominated one. We analysed a Sloan Digital Sky Survey (SDSS) archival optical spectrum taken during a period of low radio and optical activity of the source. We estimated the mass of the central black hole using the width of the CIV emission line. In our work, we have also investigated SDSS archival optical photometric data and UV GALEX observations to estimate the thermal-disk emission contribution of GB6 J1239+0443. Our analysis of the gamma-ray data taken during the flaring episodes indicates a flat gamma-ray spectrum, with an extension of up to 15 GeV, with no statistically-relevant sign of absorption from the broad line region, suggesting that the blazar-zone is located beyond the broad line region. This result is confirmed by the modeling of the broad-band spectral energy distribution (well constrained by the available multiwavelength data) of the flaring activity periods and by the accretion disk luminosity and black hole mass estimated by us using archival data.Comment: 30 pages, 7 figures, 4 tables MNRAS Accepted on 2012 June 1

    Search for massive rare particles with MACRO

    Get PDF
    Massive rare particles have been searched for in the penetrating cosmic radiation using the MACRO apparatus at the Gran Sasso National Laboratories. Liquid scintillators, streamer tubes and nuclear track detectors have been used to search for magnetic monopoles (MMs). Based on no observation of such signals, stringent flux limits are established for MMs as slow as a few 10^(-5)c. The methods based on the scintillator and on the nuclear track subdetectors were also applied to search for nuclearites. Preliminary results of the searches for charged Q-balls are also presented.Comment: 20 pages, 9 EPS figures included with epsfi

    Fermi LAT Search for Photon Lines from 30 to 200 GeV and Dark Matter Implications

    Full text link
    Dark matter (DM) particle annihilation or decay can produce monochromatic γ\gamma-rays readily distinguishable from astrophysical sources. γ\gamma-ray line limits from 30 GeV to 200 GeV obtained from 11 months of Fermi Large Area Space Telescope data from 20-300 GeV are presented using a selection based on requirements for a γ\gamma-ray line analysis, and integrated over most of the sky. We obtain γ\gamma-ray line flux upper limits in the range 0.64.5×109cm2s10.6-4.5\times 10^{-9}\mathrm{cm}^{-2}\mathrm{s}^{-1}, and give corresponding DM annihilation cross-section and decay lifetime limits. Theoretical implications are briefly discussed.Comment: 6 pages, 1 figure. Accepted for publication by The Physical Review Letter

    Measurement of the atmospheric neutrino-induced upgoing muon flux using MACRO

    Get PDF
    We present a measurement of the flux of neutrino-induced upgoing muons (~100 GeV) using the MACRO detector. The ratio of the number of observed to expected events integrated over all zenith angles is 0.74 +/- 0.036 (stat) +/- 0.046(systematic) +/- 0.13 (theoretical). The observed zenith distribution for -1.0 < cos(theta) < -0.1 does not fit well with the no oscillation expectation, giving a maximum probability for chi^2 of 0.1%. The acceptance of the detector has been extensively studied using downgoing muons, independent analyses and Monte-Carlo simulations. The other systematic uncertainties cannot be the source of the discrepancies between the data and expectations. We have investigated whether the observed number of events and the shape of the zenith distribution can be explained by a neutrino oscillation hypothesis. Fitting either the flux or zenith distribution independently yields mixing parameters of sin^2 (2theta)=1.0 and delta m^2 of a few times 10^-3 eV^2. However, the observed zenith distribution does not fit well with any expectations giving a maximum probability for chi^2 of 5% for the best oscillation hypothesis, and the combined probability for the shape and number of events is 17%. We conclude that these data favor a neutrino oscillation hypothesis, but with unexplained structure in the zenith distribution not easily explained by either the statistics or systematics of the experiment.Comment: 7 pages (two-column) with 4 figure

    High energy cosmic ray physics with underground muons in MACRO. I. Analysis methods and experimental results

    Get PDF
    In this paper, the first of a two-part work, we present the reconstruction and measurement of muon events detected underground by the MACRO experiment at Gran Sasso (E у 1.3 TeV in atmosphere͒. The main aim of this work is to discuss the muon multiplicity distribution as measured in the detector. The data sample analyzed consists of 4.4ϫ10 6 muon events, of which ϳ 263 000 are multiple muons, corresponding to a total live time of 5850 h. In this sample, the observed multiplicities extend above N ϭ35, with intermuon separations up to 50 m and beyond. Additional complementing measurements, such as the inclusive muon flux, the angular distribution, and the muon separation distribution ͑decoherence͒, are also included. The physical interpretation of the results presented here is reported in the following companion paper. ͓S0556-2821͑97͒00615-2͔ PACS number͑s͒: 13.85. Tp, 96.40.De, 96.40.Tv, 98.70.S
    corecore