408 research outputs found

    Involutivity of integrals for sine-Gordon, modified KdV and potential KdV maps

    Full text link
    Closed form expressions in terms of multi-sums of products have been given in \cite{Tranclosedform, KRQ} of integrals of sine-Gordon, modified Korteweg-de Vries and potential Korteweg-de Vries maps obtained as so-called (p,1)(p,-1)-traveling wave reductions of the corresponding partial difference equations. We prove the involutivity of these integrals with respect to recently found symplectic structures for those maps. The proof is based on explicit formulae for the Poisson brackets between multi-sums of products.Comment: 24 page

    Construction of Integrals of Higher-Order Mappings

    Full text link
    We find that certain higher-order mappings arise as reductions of the integrable discrete A-type KP (AKP) and B-type KP (BKP) equations. We find conservation laws for the AKP and BKP equations, then we use these conservation laws to derive integrals of the associated reduced maps.Comment: appear to Journal of the Physical Society of Japa

    On a two-parameter extension of the lattice KdV system associated with an elliptic curve

    Full text link
    A general structure is developed from which a system of integrable partial difference equations is derived generalising the lattice KdV equation. The construction is based on an infinite matrix scheme with as key ingredient a (formal) elliptic Cauchy kernel. The consistency and integrability of the lattice system is discussed as well as special solutions and associated continuum equations.Comment: Submitted to the proceedings of the Oeresund PDE-symposium, 23-25 May 2002; 17 pages LaTeX, style-file include

    Long-time behaviour of discretizations of the simple pendulum equation

    Full text link
    We compare the performance of several discretizations of the simple pendulum equation in a series of numerical experiments. The stress is put on the long-time behaviour. We choose for the comparison numerical schemes which preserve the qualitative features of solutions (like periodicity). All these schemes are either symplectic maps or integrable (preserving the energy integral) maps, or both. We describe and explain systematic errors (produced by any method) in numerical computations of the period and the amplitude of oscillations. We propose a new numerical scheme which is a modification of the discrete gradient method. This discretization preserves (almost exactly) the period of small oscillations for any time step.Comment: 41 pages, including 18 figures and 4 table

    The staircase method: integrals for periodic reductions of integrable lattice equations

    Full text link
    We show, in full generality, that the staircase method provides integrals for mappings, and correspondences, obtained as traveling wave reductions of (systems of) integrable partial difference equations. We apply the staircase method to a variety of equations, including the Korteweg-De Vries equation, the five-point Bruschi-Calogero-Droghei equation, the QD-algorithm, and the Boussinesq system. We show that, in all these cases, if the staircase method provides r integrals for an n-dimensional mapping, with 2r<n, then one can introduce q<= 2r variables, which reduce the dimension of the mapping from n to q. These dimension-reducing variables are obtained as joint invariants of k-symmetries of the mappings. Our results support the idea that often the staircase method provides sufficiently many integrals for the periodic reductions of integrable lattice equations to be completely integrable. We also study reductions on other quad-graphs than the regular 2D lattice, and we prove linear growth of the multi-valuedness of iterates of high-dimensional correspondences obtained as reductions of the QD-algorithm.Comment: 40 pages, 23 Figure
    corecore