1,228 research outputs found
Nonequilibrium work distribution of a quantum harmonic oscillator
We analytically calculate the work distribution of a quantum harmonic
oscillator with arbitrary time-dependent angular frequency. We provide detailed
expressions for the work probability density for adiabatic and nonadiabatic
processes, in the limit of low and high temperature. We further verify the
validity of the quantum Jarzynski equalityComment: 6 pages, 3 figure
The influence of long-range correlated defects on critical ultrasound propagation in solids
The effect of long-range correlated quenched structural defects on the
critical ultrasound attenuation and sound velocity dispersion is studied for
three-dimensional Ising-like systems. A field-theoretical description of the
dynamic critical effects of ultrasound propagation in solids is performed with
allowance for both fluctuation and relaxation attenuation mechanisms. The
temperature and frequency dependences of the dynamical scaling functions of the
ultrasound critical characteristics are calculated in a two-loop approximation
for different values of the correlation parameter of the Weinrib-Halperin
model with long-range correlated defects. The asymptotic behavior of the
dynamical scaling functions in hydrodynamic and critical regions is separated.
The influence of long-range correlated disorder on the asymptotic behavior of
the critical ultrasonic anomalies is discussed.Comment: 12 RevTeX pages, 3 figure
Defining integrals over connections in the discretized gravitational functional integral
Integration over connection type variables in the path integral for the
discrete form of the first order formulation of general relativity theory is
studied. The result (a generalized function of the rest of variables of the
type of tetrad or elementary areas) can be defined through its moments, i. e.
integrals of it with the area tensor monomials. In our previous paper these
moments have been defined by deforming integration contours in the complex
plane as if we had passed to an Euclidean-like region. In the present paper we
define and evaluate the moments in the genuine Minkowsky region. The
distribution of interest resulting from these moments in this non-positively
defined region contains the divergences. We prove that the latter contribute
only to the singular (\dfun like) part of this distribution with support in the
non-physical region of the complex plane of area tensors while in the physical
region this distribution (usual function) confirms that defined in our previous
paper which decays exponentially at large areas. Besides that, we evaluate the
basic integrals over which the integral over connections in the general path
integral can be expanded.Comment: 18 page
Comments on dihedral and supersymmetric extensions of a family of Hamiltonians on a plane
For any odd , a connection is established between the dihedral and
supersymmetric extensions of the Tremblay-Turbiner-Winternitz Hamiltonians
on a plane. For this purpose, the elements of the dihedral group
are realized in terms of two independent pairs of fermionic creation and
annihilation operators and some interesting trigonometric identities are
demonstrated.Comment: 10 pages, no figure, acknowledgments added, references completed,
published versio
Effect of structural defects on anomalous ultrasound propagation in solids during second-order phase transitions
The effect of structural defects on the critical ultrasound attenuation and
ultrasound velocity dispersion in Ising-like three-dimensional systems is
studied. A field-theoretical description of the dynamic effects of
acoustic-wave propagation in solids during phase transitions is performed with
allowance for both fluctuation and relaxation attenuation mechanisms. The
temperature and frequency dependences of the scaling functions of the
attenuation coefficient and the ultrasound velocity dispersion are calculated
in a two-loop approximation for pure and structurally disordered systems, and
their asymptotic behavior in hydrodynamic and critical regions is separated. As
compared to a pure system, the presence of structural defects in it is shown to
cause a stronger increase in the sound attenuation coefficient and the sound
velocity dispersion even in the hydrodynamic region as the critical temperature
is reached. As compared to pure analogs, structurally disordered systems should
exhibit stronger temperature and frequency dependences of the acoustic
characteristics in the critical region.Comment: 7 RevTeX pages, 4 figure
Critical Behaviour of 3D Systems with Long-Range Correlated Quenched Defects
A field-theoretic description of the critical behaviour of systems with
quenched defects obeying a power law correlations for
large separations is given. Directly for three-dimensional systems
and different values of correlation parameter a
renormalization analysis of scaling function in the two-loop approximation is
carried out, and the fixed points corresponding to stability of the various
types of critical behaviour are identified. The obtained results essentially
differ from results evaluated by double - expansion. The
critical exponents in the two-loop approximation are calculated with the use of
the Pade-Borel summation technique.Comment: Submitted to J. Phys. A, Letter to Editor 9 pages, 4 figure
- …