1,242 research outputs found
The order of curvature operators on loop groups
For loop groups (free and based), we compute the exact order of the curvature
operator of the Levi-Civita connection depending on a Sobolev space parameter.
This extends results of Freed and Maeda-Rosenberg-Torres.Comment: to appear in Letters in Mathematical Physic
On the Birkhoff factorization problem for the Heisenberg magnet and nonlinear Schroedinger equations
A geometrical description of the Heisenberg magnet (HM) equation with
classical spins is given in terms of flows on the quotient space where
is an infinite dimensional Lie group and is a subgroup of . It is
shown that the HM flows are induced by an action of on ,
and that the HM equation can be integrated by solving a Birkhoff factorization
problem for . For the HM flows which are Laurent polynomials in the spectral
variable we derive an algebraic transformation between solutions of the
nonlinear Schroedinger (NLS) and Heisenberg magnet equations. The Birkhoff
factorization for is treated in terms of the geometry of the Segal-Wilson
Grassmannian . The solution of the problem is given in terms of a pair
of Baker functions for special subspaces of . The Baker functions are
constructed explicitly for subspaces which yield multisoliton solutions of NLS
and HM equations.Comment: To appear in Journal of Mathematical Physic
Kinks, chains, and loop groups in the CP^n sigma models
We consider topological solitons in the CP^n sigma models in two space
dimensions. In particular, we study "kinks", which are independent of one
coordinate up to a rotation of the target space, and "chains", which are
periodic in one coordinate up to a rotation of the target space. Kinks and
chains both exhibit constituents, similar to monopoles and calorons in SU(n)
Yang-Mills-Higgs and Yang-Mills theories. We examine the constituent structure
using Lie algebras.Comment: 19 pages, 3 figures v2: Discussions improved, examples added,
references added, typos correcte
Circle actions, central extensions and string structures
The caloron correspondence can be understood as an equivalence of categories
between -bundles over circle bundles and -bundles where
is the group of smooth loops in . We use it, and lifting bundle gerbes,
to derive an explicit differential form based formula for the (real) string
class of an -bundle.Comment: 25 page
Canonical quantization of the WZW model with defects and Chern-Simons theory
We perform canonical quantization of the WZW model with defects and
permutation branes. We establish symplectomorphism between phase space of WZW
model with defects on cylinder and phase space of Chern-Simons theory on
annulus times with Wilson lines, and between phase space of WZW model
with defects on strip and Chern-Simons theory on disc times with
Wilson lines. We obtained also symplectomorphism between phase space of the
-fold product of the WZW model with boundary conditions specified by
permutation branes, and phase space of Chern-Simons theory on sphere with
holes and two Wilson lines.Comment: 26 pages, minor corrections don
Geometric structures on loop and path spaces
Is is known that the loop space associated to a Riemannian manifold admits a
quasi-symplectic structure. This article shows that this structure is not
likely to recover the underlying Riemannian metric by proving a result that is
a strong indication of the "almost" independence of the quasi-symplectic
structure with respect to the metric. Finally conditions to have contact
structures on these spaces are studied.Comment: Final version. To appear in Proceedings of Math. Sci. Indian Academy
of Science
A remark on boson-fermion correspondence
We give a simple explanaition of classical boson-fermion correspondence
A mathematical formalism for the Kondo effect in WZW branes
In this paper, we show how to adapt our rigorous mathematical formalism for
closed/open conformal field theory so that it captures the known physical
theory of branes in the WZW model. This includes a mathematically precise
approach to the Kondo effect, which is an example of evolution of one
conformally invariant boundary condition into another through boundary
conditions which can break conformal invariance, and a proposed mathematical
statement of the Kondo effect conjecture. We also review some of the known
physical results on WZW boundary conditions from a mathematical perspective.Comment: Added explanations of the settings and main result
String theories as the adiabatic limit of Yang-Mills theory
We consider Yang-Mills theory with a matrix gauge group on a direct
product manifold , where is a two-dimensional
Lorentzian manifold and is a two-dimensional open disc with the boundary
. The Euler-Lagrange equations for the metric on
yield constraint equations for the Yang-Mills energy-momentum tensor. We show
that in the adiabatic limit, when the metric on is scaled down, the
Yang-Mills equations plus constraints on the energy-momentum tensor become the
equations describing strings with a worldsheet moving in the based
loop group , where is the boundary of
. By choosing and putting to zero all parameters in besides , we get a string moving in . In
arXiv:1506.02175 it was described how one can obtain the Green-Schwarz
superstring action from Yang-Mills theory on while
shrinks to a point. Here we also consider Yang-Mills theory on a
three-dimensional manifold and show that in the limit when
the radius of tends to zero, the Yang-Mills action functional
supplemented by a Wess-Zumino-type term becomes the Green-Schwarz superstring
action.Comment: 11 pages, v3: clarifying remarks added, new section on embedding of
the Green-Schwarz superstring into d=3 Yang-Mills theory include
- …