64 research outputs found

    Impact Response of Granular Soils

    Get PDF
    The paper describes results from an extensive experimental model study of response of dry sand to impact of a rigid pounder. In the laboratory tests a circular steel pounder was repeatedly dropped on sand contained in a large tank. Measurements included pounder acceleration and soil pressure at impact, pounder settlement, and soil densities and strains. Effects of pounder drop height, weight and contact area were investigated. A method is presented for the evaluation of global dynamic stiffness of the so1l mass affected by the impact by calculating a dynamic settlement modulus (DSM). The DSM values are determined from integration of the impact acceleration record with respect to time using measured integration constants. DSM values show good correlation to soil densities and corresponding elastic moduli obtained from laboratory tests. The proposed method may have immediate construction application as it offers a reliable and cost effective alternative to quality control of dynamic compaction

    Use of ultraviolet-fluorescence-based simulation in evaluation of personal protective equipment worn for first assessment and care of a patient with suspected high-consequence infectious disease

    Get PDF
    Background: Variations currently exist across the UK in the choice of personal protective equipment (PPE) used by healthcare workers when caring for patients with suspected high-consequence infectious diseases (HCIDs). Aim: To test the protection afforded to healthcare workers by current PPE ensembles during assessment of a suspected HCID case, and to provide an evidence base to justify proposal of a unified PPE ensemble for healthcare workers across the UK. Methods: One ‘basic level’ (enhanced precautions) PPE ensemble and five ‘suspected case’ PPE ensembles were evaluated in volunteer trials using ‘Violet’; an ultraviolet-fluorescence-based simulation exercise to visualize exposure/contamination events. Contamination was photographed and mapped. Findings: There were 147 post-simulation and 31 post-doffing contamination events, from a maximum of 980, when evaluating the basic level of PPE. Therefore, this PPE ensemble did not afford adequate protection, primarily due to direct contamination of exposed areas of the skin. For the five suspected case ensembles, 1584 post-simulation contamination events were recorded, from a maximum of 5110. Twelve post-doffing contamination events were also observed (face, two events; neck, one event; forearm, one event; lower legs, eight events). Conclusion: All suspected case PPE ensembles either had post-doffing contamination events or other significant disadvantages to their use. This identified the need to design a unified PPE ensemble and doffing procedure, incorporating the most protective PPE considered for each body area. This work has been presented to, and reviewed by, key stakeholders to decide on a proposed unified ensemble, subject to further evaluation

    ‘VIOLET’: a fluorescence-based simulation exercise for training healthcare workers in the use of personal protective equipment

    Get PDF
    Background Healthcare workers caring for patients with high-consequence infectious diseases (HCIDs) require protection from pathogen exposure, for example by wearing personal protective equipment (PPE). Protection is acquired through the inherent safety of the PPE components, but also their safe and correct use, supported by adequate training and user familiarity. However, the evidence base for HCID PPE ensembles and any associated training is lacking, with subsequent variation between healthcare providers. Aim To develop an evidence-based assessment and training tool for evaluating PPE ensembles and doffing protocols, in the assessment of patients with suspected HCIDs. Methods VIOLET (Visualising Infection with Optimised Light for Education and Training) comprises a healthcare mannequin adapted to deliver simulated bodily fluids containing UV-fluorescent tracers. On demand and remotely operated, the mannequin projectile vomits (blue), coughs (red), has diarrhoea (yellow) and is covered in sweat (orange). Wearing PPE, healthcare staff participate in an HCID risk assessment and examination of the ‘patient’, thereby becoming exposed to these bodily fluids. Contamination of PPE is visualized and body-mapped under UV light before and after removal. Observational findings and participant feedback, around its use as a training exercise, is also recorded. Findings Significant contamination from different exposure events was seen, enabling evaluation of PPE and doffing procedures used. Observational data and participant feedback demonstrated its strengths and success as a training technique. Conclusion Simulation exercises using VIOLET provide evidence-based assessment of PPE ensembles, and are a valuable resource for training of healthcare staff in wearing and safe doffing of PPE

    Soil Profiling by Spectral Analysis of Surface Waves

    Get PDF
    Methods for in-situ surface measurement and spectral analysis of Rayleigh waves for subsurface soil investigation have been tried by several researchers in recent years. The two most common methods, steady-state Rayleigh-wave and spectral-analysis-of-surface-waves (SASW) have certain disadvantages and are not used for routine soil investigation. The paper presents a system which uses a controlled vibration source with amplitude modulation and variable frequency capabilities. The electromagnetic vibrator may be varied in size and weight according to the depth of the soil strata investigated. The Rayleigh wave phase velocity dispersion curves are used to compute apparent velocity distribution in depth. An approximate conversion method is then used to estimate Rayleigh wave velocity profiles of the layered soil from the apparent velocities distributions. Shear wave velocities, computed by using established theoretical relationship, may then be used to obtain design parameters for the soil strata. The system has been used routinely in Japan and South East Asia for several years now and results show good correlations with SPT and shear wave velocity measurements conducted as verification tests in a variety of sites

    Internet Daters’ Body Type Preferences: Race–Ethnic and Gender Differences

    Get PDF
    Employing a United States sample of 5,810 Yahoo heterosexual internet dating profiles, this study finds race–ethnicity and gender influence body type preferences for dates, with men and whites significantly more likely than women and non-whites to have such preferences. White males are more likely than non-white men to prefer to date thin and toned women, while African-American and Latino men are significantly more likely than white men to prefer female dates with thick or large bodies. Compatible with previous research showing non-whites have greater body satisfaction and are less influenced by mainstream media than whites, our findings suggest Latinos and African Americans negotiate dominant white idealizations of thin female bodies with their own cultures’ greater acceptance of larger body types

    Chemoreception Regulates Chemical Access to Mouse Vomeronasal Organ: Role of Solitary Chemosensory Cells

    Get PDF
    Controlling stimulus access to sensory organs allows animals to optimize sensory reception and prevent damage. The vomeronasal organ (VNO) detects pheromones and other semiochemicals to regulate innate social and sexual behaviors. This semiochemical detection generally requires the VNO to draw in chemical fluids, such as bodily secretions, which are complex in composition and can be contaminated. Little is known about whether and how chemical constituents are monitored to regulate the fluid access to the VNO. Using transgenic mice and immunolabeling, we found that solitary chemosensory cells (SCCs) reside densely at the entrance duct of the VNO. In this region, most of the intraepithelial trigeminal fibers innervate the SCCs, indicating that SCCs relay sensory information onto the trigeminal fibers. These SCCs express transient receptor potential channel M5 (TRPM5) and the phospholipase C (PLC) β2 signaling pathway. Additionally, the SCCs express choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) for synthesizing and packaging acetylcholine, a potential transmitter. In intracellular Ca2+ imaging, the SCCs responded to various chemical stimuli including high concentrations of odorants and bitter compounds. The responses were suppressed significantly by a PLC inhibitor, suggesting involvement of the PLC pathway. Further, we developed a quantitative dye assay to show that the amount of stimulus fluid that entered the VNOs of behaving mice is inversely correlated to the concentration of odorous and bitter substances in the fluid. Genetic knockout and pharmacological inhibition of TRPM5 resulted in larger amounts of bitter compounds entering the VNOs. Our data uncovered that chemoreception of fluid constituents regulates chemical access to the VNO and plays an important role in limiting the access of non-specific irritating and harmful substances. Our results also provide new insight into the emerging role of SCCs in chemoreception and regulation of physiological actions

    Inducible developmental reprogramming redefines commitment to sexual development in the malaria parasite <i>Plasmodium berghei</i>

    Get PDF
    During malaria infection, Plasmodium spp. parasites cyclically invade red blood cells and can follow two different developmental pathways. They can either replicate asexually to sustain the infection, or differentiate into gametocytes, the sexual stage that can be taken up by mosquitoes, ultimately leading to disease transmission. Despite its importance for malaria control, the process of gametocytogenesis remains poorly understood, partially due to the difficulty of generating high numbers of sexually committed parasites in laboratory conditions1. Recently, an apicomplexa-specific transcription factor (AP2-G) was identified as necessary for gametocyte production in multiple Plasmodium species2,3, and suggested to be an epigenetically regulated master switch that initiates gametocytogenesis4,5. Here we show that in a rodent malaria parasite, Plasmodium berghei, conditional overexpression of AP2-G can be used to synchronously convert the great majority of the population into fertile gametocytes. This discovery allowed us to redefine the time frame of sexual commitment, identify a number of putative AP2-G targets and chart the sequence of transcriptional changes through gametocyte development, including the observation that gender-specific transcription occurred within 6 h of induction. These data provide entry points for further detailed characterization of the key process required for malaria transmission

    The ontogeny of antipredator behavior: age differences in California ground squirrels (Otospermophilus beecheyi) at multiple stages of rattlesnake encounters

    Full text link
    Newborn offspring of animals often exhibit fully functional innate antipredator behaviors, but they may also require learning or further development to acquire appropriate responses. Experience allows offspring to modify responses to specific threats and also leaves them vulnerable during the learning period. However, antipredator behaviors used at one stage of a predator encounter may compensate for deficiencies at another stage, a phenomenon that may reduce the overall risk of young that are vulnerable at one or more stages. Few studies have examined age differences in the effectiveness of antipredator behaviors across multiple stages of a predator encounter. In this study, we examined age differences in the antipredator behaviors of California ground squirrels (Otospermophilus beecheyi) during the detection, interaction, and attack stages of Pacific rattlesnake (Crotalus oreganus) encounters. Using free-ranging squirrels, we examined the ability to detect free-ranging rattlesnakes, snake-directed behaviors after discovery of a snake, and responses to simulated rattlesnake strikes. We found that age was the most important factor in snake detection, with adults being more likely to detect snakes than pups. We also found that adults performed more tail flagging (a predator-deterrent signal) toward snakes and were more likely to investigate a snake’s refuge when interacting with a hidden snake. In field experiments simulating snake strikes, adults exhibited faster reaction times than pups. Our results show that snake detection improves with age and that pups probably avoid rattlesnakes and minimize time spent in close proximity to them to compensate for their reduced reaction times to strikes

    Effects of adding cellulose on rheological characteristics of wheat flour dough and on bread quality

    Get PDF
    Several studies have associated the consumption of dietary fibre with positive health effects and as a result a wide array of fibre ingredients has been developed to be included as part of formulation of functional food. Powdered cellulose is one type of fibre ingredient that is finding wide application in food, mainly in functional bread, either to increase level of fibre or to reduce calorific value. However, the inclusion of fibre in a formulation will inevitably bring about certain changes to the product. This current study investigated the effects of adding different levels (2, 4 and 6 %) of powdered cellulose on the rheological properties of wheat dough and bread qualities. The main dough characteristics assessed were farinograph water absorption, resistance and extensibility; while bread was evaluated for volume, weight, crumb softness and nutritional values (level of insoluble dietary fibre and calorie content). The bread qualities of cellulose-added bread were compared to those of brown bread. Findings revealed that water absorption of the dough and its stability against over-mixing increased significantly (P&lt;0.05) with increasing level of powdered cellulose. Although the dough became more resistant, it lost extensibility; and thus bread of smaller volume was observed, with a decrease of about 200 cm3 at 6 % level cellulose, compared to plain bread. Cellulose-added bread was slightly heavier than plain bread and brown bread by about 5 – 15 grams. At 4 and 6 % level of fibre, bread had softer crumbs compared to both plain white bread and brown bread. With 6 % cellulose, the level of insoluble dietary fibre was 13.8 %, as compared to 6 % in plain bread and 13.1 % in brown bread. At 6 % cellulose there was a decrease of 77kcal and 47kcal compared to plain and brown bread respectively. Addition of cellulose at 2 and 4% gave bread with larger volume without improving the nutritional characteristics. At 6 % level of cellulose, bread had almost same level of insoluble dietary fibre than that of brown bread, but still offering better quality in terms of volume, weight, colour and texture compared to the brown bread. Therefore addition of powdered cellulose at level 6 % was found to be most appropriate for the purpose of functional bread.Keywords: Cellulose, rheology, flour, bread, insoluble fibre, calori
    corecore