46 research outputs found
An effector region in Eps8 is responsible for the activation of the Rac-specific GEF activity of Sos-1 and for the proper localization of the Rac-based actin-polymerizing machine
Genetic and biochemical evidence demonstrated that Eps8 is involved in the routing of signals from Ras to Rac. This is achieved through the formation of a tricomplex consisting of Eps8-E3b1-Sos-1, which is endowed with Rac guanine nucleotide exchange activity. The catalytic subunit of this complex is represented by Sos-1, a bifunctional molecule capable of catalyzing guanine nucleotide exchange on Ras and Rac. The mechanism by which Sos-1 activity is specifically directed toward Rac remains to be established. Here, by performing a structure-function analysis we show that the Eps8 output function resides in an effector region located within its COOH terminus. This effector region, when separated from the holoprotein, activates Rac and acts as a potent inducer of actin polymerization. In addition, it binds to Sos-1 and is able to induce Rac-specific, Sos-1-dependent guanine nucleotide exchange activity. Finally, the Eps8 effector region mediates a direct interaction of Eps8 with F-actin, dictating Eps8 cellular localization. We propose a model whereby the engagement of Eps8 in a tricomplex with E3b1 and Sos-1 facilitates the interaction of Eps8 with Sos-1 and the consequent activation of an Sos-1 Rac-specific catalytic ability. In this complex, determinants of Eps8 are responsible for the proper localization of the Rac-activating machine to sites of actin remodeling
Evaluation of bioactive sphingolipids in 4-HPR-resistant leukemia cells
<p>Abstract</p> <p>Background</p> <p><it>N</it>-(4-hydroxyphenyl)retinamide (4-HPR, fenretinide) is a synthetic retinoid with potent pro-apoptotic activity against several types of cancer, but little is known regarding mechanisms leading to chemoresistance. Ceramide and, more recently, other sphingolipid species (e.g., dihydroceramide and dihydrosphingosine) have been implicated in 4-HPR-mediated tumor cell death. Because sphingolipid metabolism has been reported to be altered in drug-resistant tumor cells, we studied the implication of sphingolipids in acquired resistance to 4-HPR based on an acute lymphoblastic leukemia model.</p> <p>Methods</p> <p>CCRF-CEM cell lines resistant to 4-HPR were obtained by gradual selection. Endogenous sphingolipid profiles and in situ enzymatic activities were determined by LC/MS, and resistance to 4-HPR or to alternative treatments was measured using the XTT viability assay and annexin V-FITC/propidium iodide labeling.</p> <p>Results</p> <p>No major crossresistance was observed against other antitumoral compounds (i.e. paclitaxel, cisplatin, doxorubicin hydrochloride) or agents (i.e. ultra violet C, hydrogen peroxide) also described as sphingolipid modulators. CCRF-CEM cell lines resistant to 4-HPR exhibited a distinctive endogenous sphingolipid profile that correlated with inhibition of dihydroceramide desaturase. Cells maintained acquired resistance to 4-HPR after the removal of 4-HPR though the sphingolipid profile returned to control levels. On the other hand, combined treatment with sphingosine kinase inhibitors (unnatural (dihydro)sphingosines ((dh)Sph)) and glucosylceramide synthase inhibitor (PPMP) in the presence or absence of 4-HPR increased cellular (dh)Sph (but not ceramide) levels and were highly toxic for both parental and resistant cells.</p> <p>Conclusions</p> <p>In the leukemia model, acquired resistance to 4-HPR is selective and persists in the absence of sphingolipid profile alteration. Therapeutically, the data demonstrate that alternative sphingolipid-modulating antitumoral strategies are suitable for both 4-HPR-resistant and sensitive leukemia cells. Thus, whereas sphingolipids may not be critical for maintaining resistance to 4-HPR, manipulation of cytotoxic sphingolipids should be considered a viable approach for overcoming resistance.</p
Antineoplastic Drugs as a Potential Risk Factor in Occupational Settings: Mechanisms of Action at the Cell Level, Genotoxic Effects, and Their Detection Using Different Biomarkers
U članku je prikazana osnovna podjela antineoplastičnih lijekova prema mehanizmima djelovanja na razini stanice. Objašnjeni su mehanizmi genotoksičnosti najvažnijih vrsta lijekova koji se primjenjuju u okviru uobičajenih protokola za liječenje zloćudnih novotvorina. Navedena je važeća klasifi kacija antineoplastika prema kancerogenom potencijalu, podaci o mutagenom potencijalu te je prikazana njihova podjela u skladu s anatomsko-terapijsko-kemijskim sustavom klasifi kacije. Sustavno su prikazani najvažniji
rezultati svjetskih i hrvatskih istraživanja na populacijama radnika izloženih antineoplasticima, provedenih u razdoblju 1980.-2009. s pomoću četiri najčešće primjenjivane metode: analize izmjena sestrinskih kromatida, analize kromosomskih aberacija, mikronukleus-testa i komet-testa. Objašnjena su osnovna
načela navedenih metoda te raspravljene njihove prednosti i nedostaci. Biološki pokazatelji daju važne podatke o individualnoj osjetljivosti profesionalno izloženih ispitanika koji mogu poslužiti unaprjeđenju postojećih uvjeta rada i upravljanju rizicima pri izloženosti genotoksičnim agensima. Na osnovi prednosti i nedostataka citogenetičkih metoda zaključeno je da je mikronukleus-test, koji podjednako uspješno dokazuje klastogene i aneugene učinke, jedna od najboljih metoda dostupnih za otkrivanje štetnih djelovanja antineoplastičnih lijekova koji su u aktivnoj primjeni.This article brings an overview of the mechanisms of action of antineoplastic drugs used in the clinical setting. It also describes the genotoxic potentials of the most important classes of antineoplastic drugs involved in standard chemotherapy protocols. Classifi cation of antineoplastic drugs according to the IARC monographs on the evaluation of carcinogenic risks to humans is accompanied by data on their mutagenicity and the most recent updates in the Anatomical Therapeutic Chemical (ATC) Classifi cation System. We report the main fi ndings of biomonitoring studies that were conducted in exposed healthcare workers all over the world between 1980 and 2009 using four biomarkers: sister chromatid exchanges,
chromosome aberrations, micronuclei. and the comet assay. The methods are briefl y explained and their advantages and disadvantages discussed. Biomarkers provide important information on individual genome sensitivity, which eventually might help to improve current working practices and to manage the risks
related with exposure to genotoxic agents. Taking into consideration all known advantages and drawbacks of the existing cytogenetic methods, the micronucleus assay, which is able to detect both clastogenic and aneugenic action, is the most suitable biomarker for assessing harmful effects of antineoplastic drugs currently used in health care
Repeated analysis of sister chromatid exchange induction by diepoxybutane in cultured human lymphocytes: effect of glutathione S-transferase T1 and M1 genotype
Spontaneous and diepoxybutane (DEB)-induced sister-chromatid exchanges (SCEs) were examined in whole-blood lymphocyte cultures of 3 men and 4 women. A strong increase in mean number of SCEs per cell with increasing DEB concentrations (0, 2, and 4 microM) was observed in cultures of all subjects, but 3 of the donors were clearly more sensitive than the others. The SCE measurements were repeated 2-6 times per donor over a period of 55 months to assess the stability of the individual SCE response. The results showed that SCE induction by DEB was steady in the individuals during the follow-up at each DEB dose, with no significant differences among the repeated experiments. At 4 microM DEB, the DEB-sensitive and -resistant donors could be reliably be differentiated from each other in all trials. As DEB-sensitivity has been suggested to be due to the lack of glutathione S-transferase (GST) T1, the donors were genotyped for the presence of GSTT1 and GSTM1 genes. The 3 individuals found to be DEB-sensitive were all of the GSTT1 null genotype, whereas the 4 DEB-resistant donors were GSTT1 positive, which supported the role of the GSTT1 gene in determining DEB-sensitivity. Three of the DEB-resistant and none of the DEB-sensitive had the GSTM1 null genotype. Thus, the lack of the GSTM1 gene was not associated with the DEB-sensitivity trait. In conclusion, the present findings show that individual SCE responses to treatment of cultured human lymphocytes with DEB can reliably be reproduced in repeated trials. The results confirm that the GSTT1 gene but not the GSTM1 gene is important in determining individual sensitivity to the in vitro genotoxicity of DEB
101. In vivo cytogenetic effects of natural humic acid
As humic compounds are naturally widespread in the environment and present in surface water, studies on their genotoxicity are justified, Humic acid (HA) has not been demonstrated to be genotoxic either in vitro or in vivo, In the present paper we investigated its activity both in intestinal and bone marrow cells following a single dose (100 mg/kg b.w. corresponding to 0.5 ml per animal of an aqueous solution of 4 g/l) of HA administered to mice by gastric intubation, to mimic the most likely route of human exposure, HA induced structural and, in particular, numerical chromosome abnormalities in intestinal cells, A marginal, non-significant induction of aneuploidy was also found in bone marrow cells