1,074 research outputs found

    The Abelianization of QCD Plasma Instabilities

    Full text link
    QCD plasma instabilities appear to play an important role in the equilibration of quark-gluon plasmas in heavy-ion collisions in the theoretical limit of weak coupling (i.e. asymptotically high energy). It is important to understand what non-linear physics eventually stops the exponential growth of unstable modes. It is already known that the initial growth of plasma instabilities in QCD closely parallels that in QED. However, once the unstable modes of the gauge-fields grow large enough for non-Abelian interactions between them to become important, one might guess that the dynamics of QCD plasma instabilities and QED plasma instabilities become very different. In this paper, we give suggestive arguments that non-Abelian self-interactions between the unstable modes are ineffective at stopping instability growth, and that the growing non-Abelian gauge fields become approximately Abelian after a certain stage in their growth. This in turn suggests that understanding the development of QCD plasma instabilities in the non-linear regime may have close parallels to similar processes in traditional plasma physics. We conjecture that the physics of collisionless plasma instabilities in SU(2) and SU(3) gauge theory becomes equivalent, respectively, to (i) traditional plasma physics, which is U(1) gauge theory, and (ii) plasma physics of U(1)x U(1) gauge theory.Comment: 36 pages; 15 figures [minor changes made to text, and new figure added, to reflect published version
    • …
    corecore