196 research outputs found

    Model checking infinite-state systems in CLP

    Get PDF
    The verification of safety and liveness properties for infinite-state systems is an important research problem. Can the well-established concepts and the existing technology for programming over constraints as first-class data structures contribute to this research? The work reported in this paper is a starting point for the experimental evaluation of constraint logic programming as a conceptual basis and practical implementation platform for model checking. We have implemented an automated verification method in CLP using real and boolean constraints. We have used the method on a number of infinite-state systems that model concurrent programs using integers or buffers. The basis of the correctness of our implementation is a formal connection between CLP programs and the formalism used for specifying concurrent systems

    A method and a tool for automatic veriication of region stability for hybrid systems

    Get PDF
    We propose a model checking method and tool that integrates state abstraction techniques for the automatic proof of a stability property for hybrid systems called \emph{region stability}. It is based on a new notion of \emph{snapshots} which yield characteristic discretizations of trajectories. We have implemented the tool and applied it to solve a number of verification problems, including the fully automatic stability proof for the break curve behavior of a train system

    Proving Termination Starting from the End

    Full text link
    We present a novel technique for proving program termination which introduces a new dimension of modularity. Existing techniques use the program to incrementally construct a termination proof. While the proof keeps changing, the program remains the same. Our technique goes a step further. We show how to use the current partial proof to partition the transition relation into those behaviors known to be terminating from the current proof, and those whose status (terminating or not) is not known yet. This partition enables a new and unexplored dimension of incremental reasoning on the program side. In addition, we show that our approach naturally applies to conditional termination which searches for a precondition ensuring termination. We further report on a prototype implementation that advances the state-of-the-art on the grounds of termination and conditional termination.Comment: 16 page

    Efficient Algorithms for Asymptotic Bounds on Termination Time in VASS

    Full text link
    Vector Addition Systems with States (VASS) provide a well-known and fundamental model for the analysis of concurrent processes, parameterized systems, and are also used as abstract models of programs in resource bound analysis. In this paper we study the problem of obtaining asymptotic bounds on the termination time of a given VASS. In particular, we focus on the practically important case of obtaining polynomial bounds on termination time. Our main contributions are as follows: First, we present a polynomial-time algorithm for deciding whether a given VASS has a linear asymptotic complexity. We also show that if the complexity of a VASS is not linear, it is at least quadratic. Second, we classify VASS according to quantitative properties of their cycles. We show that certain singularities in these properties are the key reason for non-polynomial asymptotic complexity of VASS. In absence of singularities, we show that the asymptotic complexity is always polynomial and of the form Θ(nk)\Theta(n^k), for some integer k≤dk\leq d, where dd is the dimension of the VASS. We present a polynomial-time algorithm computing the optimal kk. For general VASS, the same algorithm, which is based on a complete technique for the construction of ranking functions in VASS, produces a valid lower bound, i.e., a kk such that the termination complexity is Ω(nk)\Omega(n^k). Our results are based on new insights into the geometry of VASS dynamics, which hold the potential for further applicability to VASS analysis.Comment: arXiv admin note: text overlap with arXiv:1708.0925

    Ranking Templates for Linear Loops

    Full text link
    We present a new method for the constraint-based synthesis of termination arguments for linear loop programs based on linear ranking templates. Linear ranking templates are parametrized, well-founded relations such that an assignment to the parameters gives rise to a ranking function. This approach generalizes existing methods and enables us to use templates for many different ranking functions with affine-linear components. We discuss templates for multiphase, piecewise, and lexicographic ranking functions. Because these ranking templates require both strict and non-strict inequalities, we use Motzkin's Transposition Theorem instead of Farkas Lemma to transform the generated ∃∀\exists\forall-constraint into an ∃\exists-constraint.Comment: TACAS 201

    HSF(C): A Software Verifier Based on Horn Clauses

    Full text link
    Abstract. HSF(C) is a tool that automates verification of safety and liveness properties for C programs. This paper describes the verification approach taken by HSF(C) and provides instructions on how to install and use the tool. 1 Verification Approach HSF(C) is a tool for verification of C programs based on predicate abstraction and refinement following the counterexample-guided abstraction refinement (CE-GAR) paradigm [4]. There are a number of successful tools [1, 7, 5, 10, 2] based on abstraction refinement. We give here a brief description of our verification algorithm; interested readers can find more details about the underlying theory behind our implementation in [10, 6]. The algorithm used in HSF(C) is a generalization of the CEGAR scheme that deals with Horn-like clauses instead of transition systems/programs with procedures. We use Horn clauses to represent both the program to be verified and the proof rule used for verification, i.e., safety checking for programs wit

    Algorithmic Analysis of Qualitative and Quantitative Termination Problems for Affine Probabilistic Programs

    Full text link
    In this paper, we consider termination of probabilistic programs with real-valued variables. The questions concerned are: 1. qualitative ones that ask (i) whether the program terminates with probability 1 (almost-sure termination) and (ii) whether the expected termination time is finite (finite termination); 2. quantitative ones that ask (i) to approximate the expected termination time (expectation problem) and (ii) to compute a bound B such that the probability to terminate after B steps decreases exponentially (concentration problem). To solve these questions, we utilize the notion of ranking supermartingales which is a powerful approach for proving termination of probabilistic programs. In detail, we focus on algorithmic synthesis of linear ranking-supermartingales over affine probabilistic programs (APP's) with both angelic and demonic non-determinism. An important subclass of APP's is LRAPP which is defined as the class of all APP's over which a linear ranking-supermartingale exists. Our main contributions are as follows. Firstly, we show that the membership problem of LRAPP (i) can be decided in polynomial time for APP's with at most demonic non-determinism, and (ii) is NP-hard and in PSPACE for APP's with angelic non-determinism; moreover, the NP-hardness result holds already for APP's without probability and demonic non-determinism. Secondly, we show that the concentration problem over LRAPP can be solved in the same complexity as for the membership problem of LRAPP. Finally, we show that the expectation problem over LRAPP can be solved in 2EXPTIME and is PSPACE-hard even for APP's without probability and non-determinism (i.e., deterministic programs). Our experimental results demonstrate the effectiveness of our approach to answer the qualitative and quantitative questions over APP's with at most demonic non-determinism.Comment: 24 pages, full version to the conference paper on POPL 201

    Splitting Proofs for Interpolation

    Full text link
    We study interpolant extraction from local first-order refutations. We present a new theoretical perspective on interpolation based on clearly separating the condition on logical strength of the formula from the requirement on the com- mon signature. This allows us to highlight the space of all interpolants that can be extracted from a refutation as a space of simple choices on how to split the refuta- tion into two parts. We use this new insight to develop an algorithm for extracting interpolants which are linear in the size of the input refutation and can be further optimized using metrics such as number of non-logical symbols or quantifiers. We implemented the new algorithm in first-order theorem prover VAMPIRE and evaluated it on a large number of examples coming from the first-order proving community. Our experiments give practical evidence that our work improves the state-of-the-art in first-order interpolation.Comment: 26th Conference on Automated Deduction, 201

    An Axiomatic Approach to Liveness for Differential Equations

    Full text link
    This paper presents an approach for deductive liveness verification for ordinary differential equations (ODEs) with differential dynamic logic. Numerous subtleties complicate the generalization of well-known discrete liveness verification techniques, such as loop variants, to the continuous setting. For example, ODE solutions may blow up in finite time or their progress towards the goal may converge to zero. Our approach handles these subtleties by successively refining ODE liveness properties using ODE invariance properties which have a well-understood deductive proof theory. This approach is widely applicable: we survey several liveness arguments in the literature and derive them all as special instances of our axiomatic refinement approach. We also correct several soundness errors in the surveyed arguments, which further highlights the subtlety of ODE liveness reasoning and the utility of our deductive approach. The library of common refinement steps identified through our approach enables both the sound development and justification of new ODE liveness proof rules from our axioms.Comment: FM 2019: 23rd International Symposium on Formal Methods, Porto, Portugal, October 9-11, 201

    On Multiphase-Linear Ranking Functions

    Full text link
    Multiphase ranking functions (MΦRFs\mathit{M{\Phi}RFs}) were proposed as a means to prove the termination of a loop in which the computation progresses through a number of "phases", and the progress of each phase is described by a different linear ranking function. Our work provides new insights regarding such functions for loops described by a conjunction of linear constraints (single-path loops). We provide a complete polynomial-time solution to the problem of existence and of synthesis of MΦRF\mathit{M{\Phi}RF} of bounded depth (number of phases), when variables range over rational or real numbers; a complete solution for the (harder) case that variables are integer, with a matching lower-bound proof, showing that the problem is coNP-complete; and a new theorem which bounds the number of iterations for loops with MΦRFs\mathit{M{\Phi}RFs}. Surprisingly, the bound is linear, even when the variables involved change in non-linear way. We also consider a type of lexicographic ranking functions, LLRFs\mathit{LLRFs}, more expressive than types of lexicographic functions for which complete solutions have been given so far. We prove that for the above type of loops, lexicographic functions can be reduced to MΦRFs\mathit{M{\Phi}RFs}, and thus the questions of complexity of detection and synthesis, and of resulting iteration bounds, are also answered for this class.Comment: typos correcte
    • …
    corecore