279 research outputs found

    Running towards amblyopia recovery

    Get PDF
    Amblyopia is a neurodevelopmental disorder of the visual cortex arising from abnormal visual experience early in life which is a major cause of impaired vision in infants and young children (prevalence around 3.5%). Current treatments such as eye patching are ineffective in a large number of patients, especially when applied after the juvenile critical period. Physical exercise has been recently shown to enhance adult visual cortical plasticity and to promote visual acuity recovery. With the aim to understand the potentialities for translational applications, we investigated the effects of voluntary physical activity on recovery of depth perception in adult amblyopic rats with unrestricted binocular vision; visual acuity recovery was also assessed. We report that three weeks of voluntary physical activity (free running) induced a marked and long-lasting recovery of both depth perception and visual acuity. In the primary visual cortex, ocular dominance recovered both for excitatory and inhibitory cells and was linked to activation of a specific intracortical GABAergic circuit

    Site-specific abnormalities in the visual system of a mouse model of CDKL5 deficiency disorder

    Get PDF
    CDKL5 deficiency disorder (CDD) is a neurodevelopmental disorder characterized by a severe global developmental delay and early-onset seizures. Notably, patients show distinctive visual abnormalities often clinically diagnosed as cortical visual impairment. However, the involvement of cerebral cortical dysfunctions in the origin of the symptoms is poorly understood. CDD mouse models also display visual deficits, and cortical visual responses can be used as a robust biomarker in CDKL5 mutant mice. A deeper understanding of the circuits underlying the described visual deficits is essential for directing preclinical research and translational approaches. Here, we addressed this question in two ways: first, we performed an in-depth morphological analysis of the visual pathway, from the retina to the primary visual cortex (V1), of CDKL5 null mice. We found that the lack of CDKL5 produced no alteration in the organization of retinal circuits. Conversely, CDKL5 mutants showed reduced density and altered morphology of spines and decreased excitatory synapse marker PSD95 in the dorsal lateral geniculate nucleus and in V1. An increase in the inhibitory marker VGAT was selectively present in V1. Second, using a conditional CDKL5 knockout model, we showed that selective cortical deletion of CDKL5 from excitatory cells is sufficient to produce abnormalities of visual cortical responses, demonstrating that the normal function of cortical circuits is dependent on CDKL5. Intriguingly, these deficits were associated with morphological alterations of V1 excitatory and inhibitory synaptic contacts. In summary, this work proposes cortical circuit structure and function as a critically important target for studying CDD

    The antidepressant fluoxetine acts on energy balance and leptin sensitivity via BDNF

    Get PDF
    Leptin and Brain Derived Neurotrophic Factor (BDNF) pathways are critical players in body weight homeostasis. Noninvasive treatments like environmental stimulation are able to increase response to leptin and induce BDNF expression in the brain. Emerging evidences point to the antidepressant selective serotonin reuptake inhibitor Fluoxetine (FLX) as a drug with effects similar to environmental stimulation. FLX is known to impact on body weight, with mechanisms yet to be elucidated. We herein asked whether FLX affects energy balance, the leptin system and BDNF function. Adult lean male mice chronically treated with FLX showed reduced weight gain, higher energy expenditure, increased sensitivity to acute leptin, increased hypothalamic BDNF expression, associated to changes in white adipose tissue expression typical of "brownization". In the Ntrk2tm1Ddg/J model, carrying a mutation in the BDNF receptor Tyrosine kinase B (TrkB), these effects are partially or totally reversed. Wild type obese mice treated with FLX showed reduced weight gain, increased energy output, and differently from untreated obese mice, a preserved acute response to leptin in terms of activation of the intracellular leptin transducer STAT3. In conclusion, FLX impacts on energy balance and induces leptin sensitivity and an intact TrkB function is required for these effects to take place

    Creatine deficiency and heart failure

    Get PDF
    Impaired cardiac energy metabolism has been proposed as a mechanism common to different heart failure aetiologies. The energy-depletion hypothesis was pursued by several researchers, and is still a topic of considerable interest. Unlike most organs, in the heart, the creatine kinase system represents a major component of the metabolic machinery, as it functions as an energy shuttle between mitochondria and cytosol. In heart failure, the decrease in creatine level anticipates the reduction in adenosine triphosphate, and the degree of myocardial phosphocreatine/adenosine triphosphate ratio reduction correlates with disease severity, contractile dysfunction, and myocardial structural remodelling. However, it remains to be elucidated whether an impairment of phosphocreatine buffer activity contributes to the pathophysiology of heart failure and whether correcting this energy deficit might prove beneficial. The effects of creatine deficiency and the potential utility of creatine supplementation have been investigated in experimental and clinical models, showing controversial findings. The goal of this article is to provide a comprehensive overview on the role of creatine in cardiac energy metabolism, the assessment and clinical value of creatine deficiency in heart failure, and the possible options for the specific metabolic therapy

    Age-related cognitive and motor decline in a mouse model of CDKL5 deficiency disorder is associated with increased neuronal senescence and death

    Get PDF
    open20noThis work was supported by grants to E.C. and M.G. from Telethon (GGP19045) and from the Italian parent Association “CDKL5 insieme verso la cura”, and to M.G. from the Association “l’Albero di Greta”, from the International Foundation for CDKL5 Research (IFCR 2019), from the CDKL5 Program of Excellence - LouLou Fundation (CDKL5-17-106-01) and from the Association Française du Syndrome de Rett (ASFR 2017).CDKL5 deficiency disorder (CDD) is a severe neurodevelopmental disease caused by mutations in the X-linked CDKL5 gene. Children affected by CDD display a clinical phenotype characterized by early-onset epilepsy, intellectual disability, motor impairment, and autistic-like features. Although the clinical aspects associated with CDKL5 mutations are well described in children, adults with CDD are still under-characterized. Similarly, most animal research has been carried out on young adult Cdkl5 knockout (KO) mice only. Since age represents a risk factor for the worsening of symptoms in many neurodevelopmental disorders, understanding age differences in the development of behavioral deficits is crucial in order to optimize the impact of therapeutic interventions. Here, we compared young adult Cdkl5 KO mice with middle-aged Cdkl5 KO mice, at a behavioral, neuroanatomical, and molecular level. We found an age-dependent decline in motor, cognitive, and social behaviors in Cdkl5 KO mice, as well as in breathing and sleep patterns. The behavioral decline in older Cdkl5 KO mice was not associated with a worsening of neuroanatomical alterations, such as decreased dendritic arborization or spine density, but was paralleled by decreased neuronal survival in different brain regions such as the hippocampus, cortex, and basal ganglia. Interestingly, we found increased β-galactosidase activity and DNA repair protein levels, γH2AX and XRCC5, in the brains of older Cdkl5 KO mice, which suggests that an absence of Cdkl5 accelerates neuronal senescence/death by triggering irreparable DNA damage. In summary, this work provides evidence that CDKL5 may play a fundamental role in neuronal survival during brain aging and suggests a possible worsening with age of the clinical picture in CDD patients.openGennaccaro L.; Fuchs C.; Loi M.; Pizzo R.; Alvente S.; Berteotti C.; Lupori L.; Sagona G.; Galvani G.; Gurgone A.; Raspanti A.; Medici G.; Tassinari M.; Trazzi S.; Ren E.; Rimondini R.; Pizzorusso T.; Zoccoli G.; Giustetto M.; Ciani E.Gennaccaro L.; Fuchs C.; Loi M.; Pizzo R.; Alvente S.; Berteotti C.; Lupori L.; Sagona G.; Galvani G.; Gurgone A.; Raspanti A.; Medici G.; Tassinari M.; Trazzi S.; Ren E.; Rimondini R.; Pizzorusso T.; Zoccoli G.; Giustetto M.; Ciani E

    Chondroitin 6-sulphate is required for neuroplasticity and memory in ageing

    Get PDF
    Perineuronal nets (PNNs) are chondroitin sulphate proteoglycan-containing structures on the neuronal surface that have been implicated in the control of neuroplasticity and memory. Age-related reduction of chondroitin 6-sulphates (C6S) leads to PNNs becoming more inhibitory. Here, we investigated whether manipulation of the chondroitin sulphate (CS) composition of the PNNs could restore neuroplasticity and alleviate memory deficits in aged mice. We first confirmed that aged mice (20-months) showed memory and plasticity deficits. They were able to retain or regain their cognitive ability when CSs were digested or PNNs were attenuated. We then explored the role of C6S in memory and neuroplasticity. Transgenic deletion of chondroitin 6-sulfotransferase (chst3) led to a reduction of permissive C6S, simulating aged brains. These animals showed very early memory loss at 11 weeks old. Importantly, restoring C6S levels in aged animals rescued the memory deficits and restored cortical long-term potentiation, suggesting a strategy to improve age-related memory impairment

    6-Sulphated Chondroitins Have a Positive Influence on Axonal Regeneration

    Get PDF
    Chondroitin sulphate proteoglycans (CSPGs) upregulated in the glial scar inhibit axon regeneration via their sulphated glycosaminoglycans (GAGs). Chondroitin 6-sulphotransferase-1 (C6ST-1) is upregulated after injury leading to an increase in 6-sulphated GAG. In this study, we ask if this increase in 6-sulphated GAG is responsible for the increased inhibition within the glial scar, or whether it represents a partial reversion to the permissive embryonic state dominated by 6-sulphated glycosaminoglycans (GAGs). Using C6ST-1 knockout mice (KO), we studied post-injury changes in chondroitin sulphotransferase (CSST) expression and the effect of chondroitin 6-sulphates on both central and peripheral axon regeneration. After CNS injury, wild-type animals (WT) showed an increase in mRNA for C6ST-1, C6ST-2 and C4ST-1, but KO did not upregulate any CSSTs. After PNS injury, while WT upregulated C6ST-1, KO showed an upregulation of C6ST-2. We examined regeneration of nigrostriatal axons, which demonstrate mild spontaneous axon regeneration in the WT. KO showed many fewer regenerating axons and more axonal retraction than WT. However, in the PNS, repair of the median and ulnar nerves led to similar and normal levels of axon regeneration in both WT and KO. Functional tests on plasticity after the repair also showed no evidence of enhanced plasticity in the KO. Our results suggest that the upregulation of 6-sulphated GAG after injury makes the extracellular matrix more permissive for axon regeneration, and that the balance of different CSs in the microenvironment around the lesion site is an important factor in determining the outcome of nervous system injury

    Cyclin-dependent-like kinase 5 is required for pain signaling in human sensory neurons and mouse models

    Get PDF
    Cyclin-dependent-like kinase 5 (Cdkl5) gene mutations lead to an X-linked disorder that is characterized by infantile epileptic encephalopathy, developmental delay and hypotonia. However, we found that a substantial percentage of these patients also report a previously unrecognised anamnestic deficiency in pain perception. Consistent with a role in nociception, we discovered that Cdkl5 is expressed selectively in nociceptive dorsal root ganglia (DRG) neurons in mice and in iPS-derived human nociceptors. CDKL5 deficient mice display defective epidermal innervation and conditional deletion of Cdkl5 in DRG sensory neurons impairs nociception, phenocopying CDKL5 deficiency disorder in patients. Mechanistically, Cdkl5 interacts with CaMKIIα to control outgrowth as well as TRPV1-dependent signaling, which are disrupted in both Cdkl5 mutant murine DRG and human iPS-derived nociceptors. Together, these findings unveil a previously unrecognized role for Cdkl5 in nociception, proposing an original regulatory mechanism for pain perception with implications for future therapeutics in CDKL5 deficiency disorder
    • …
    corecore