136 research outputs found
An in vitro method for determining the bioaccessibility of pharmaceuticals in wildlife
Wildlife can be exposed to human pharmaceuticals via prey that have accumulated the compounds from wastewater, surface water, sediment and soil. One factor affecting internal absorption of pharmaceuticals is bioaccessibility, the proportion of the compound that enters solution in the gastrointestinal tract. Currently, the bioaccessibility of most pharmaceuticals in prey remains unknown for most wildlife species. Here, we evaluate the potential of a two-compartment in vitro gastrointestinal tract model to compare the bioaccessibility of the antidepressant fluoxetine from invertebrate prey for birds and mammals. Samples of gizzard (or stomach) and intestinal phase digestive juices were obtained from the in vitro models along with the residual solid material. HPLC analysis revealed that the bioaccessibility of fluoxetine in the avian in vitro models (75.9% and 78.6%) was statistically significantly lower than in the mammalian models (88.2-89.6%) as a percentage of what was recovered; however there were no statistically or biologically significant inter-species difference in terms of the amount recovered per gram of 'food' inserted at the start of the simulation. Nevertheless, this in vitro model provides a useful method of comparing the bioaccessibility of pharmaceuticals in different prey for species with different gastrointestinal conditions. There may be merit for ecological risk assessments in further developing this in vitro approach to improve estimates of internal exposure for organics. This article is protected by copyright. All rights reserved
Camera traps and activity signs to estimate density and population trends in wild pigs
Massei, G., Cowan, D., Lambert, M., Coats, J., Watola, G., Fox, S., Ward, A., Pietravalle, S
Species distribution models for crop pollination: a modelling framework applied to Great Britain
Insect pollination benefits over three quarters of the world\u27s major crops. There is growing concern that observed declines in pollinators may impact on production and revenues from animal pollinated crops. Knowing the distribution of pollinators is therefore crucial for estimating their availability to pollinate crops; however, in general, we have an incomplete knowledge of where these pollinators occur. We propose a method to predict geographical patterns of pollination service to crops, novel in two elements: the use of pollinator records rather than expert knowledge to predict pollinator occurrence, and the inclusion of the managed pollinator supply. We integrated a maximum entropy species distribution model (SDM) with an existing pollination service model (PSM) to derive the availability of pollinators for crop pollination. We used nation-wide records of wild and managed pollinators (honey bees) as well as agricultural data from Great Britain. We first calibrated the SDM on a representative sample of bee and hoverfly crop pollinator species, evaluating the effects of different settings on model performance and on its capacity to identify the most important predictors. The importance of the different predictors was better resolved by SDM derived from simpler functions, with consistent results for bees and hoverflies. We then used the species distributions from the calibrated model to predict pollination service of wild and managed pollinators, using field beans as a test case. The PSM allowed us to spatially characterize the contribution of wild and managed pollinators and also identify areas potentially vulnerable to low pollination service provision, which can help direct local scale interventions. This approach can be extended to investigate geographical mismatches between crop pollination demand and the availability of pollinators, resulting from environmental change or policy scenarios
Recommended from our members
A method for the objective selection of landscape-scale study regions and sites at the national level
1. Ecological processes operating on large spatio-temporal scales are difficult to disentangle with traditional empirical approaches. Alternatively, researchers can take advantage of ‘natural’ experiments, where experimental control is exercised by careful site selection. Recent advances in developing protocols for designing these ‘pseudo-experiments’ commonly do not consider the selection of the focal region and predictor variables are usually restricted to two. Here, we advance this type of site selection protocol to study the impact of multiple landscape scale factors on pollinator abundance and diversity across multiple regions.
2. Using datasets of geographic and ecological variables with national coverage, we applied a novel hierarchical
computation approach to select study sites that contrast as much as possible in four key variables, while attempting to maintain regional comparability and national representativeness. There were three main steps to the protocol: (i) selection of six 100 9 100 km2 regions that collectively provided land cover representative of the national land average, (ii) mapping of potential sites into a multivariate space with axes representing four key factors potentially influencing insect pollinator abundance, and (iii) applying a selection algorithm which maximized differences between the four key variables, while controlling for a set of external constraints.
3. Validation data for the site selection metrics were recorded alongside the collection of data on pollinator populations during two field campaigns. While the accuracy of the metric estimates varied, the site selection succeeded in objectively identifying field sites that differed significantly in values for each of the four key variables. Between-variable correlations were also reduced or eliminated, thus facilitating analysis of their separate effects.
4. This study has shown that national datasets can be used to select randomized and replicated field sites objectively within multiple regions and along multiple interacting gradients. Similar protocols could be used for studying a range of alternative research questions related to land use or other spatially explicit environmental variables, and to identify networks of field sites for other countries, regions, drivers and response taxa in a wide range of scenarios
Recommended from our members
Species distribution models for crop pollination: a modelling framework applied to Great Britain
Insect pollination benefits over three quarters of the world's major crops. There is growing concern that observed declines in pollinators may impact on production and revenues from animal pollinated crops. Knowing the distribution of pollinators is therefore crucial for estimating their availability to pollinate crops; however, in general, we have an incomplete knowledge of where these pollinators occur. We propose a method to predict geographical patterns of pollination service to crops, novel in two elements: the use of pollinator records rather than expert knowledge to predict pollinator occurrence, and the inclusion of the managed pollinator supply. We integrated a maximum entropy species distribution model (SDM) with an existing pollination service model (PSM) to derive the availability of pollinators for crop pollination. We used nation-wide records of wild and managed pollinators (honey bees) as well as agricultural data from Great Britain. We first calibrated the SDM on a representative sample of bee and hoverfly crop pollinator species, evaluating the effects of different settings on model performance and on its capacity to identify the most important predictors. The importance of the different predictors was better resolved by SDM derived from simpler functions, with consistent results for bees and hoverflies. We then used the species distributions from the calibrated model to predict pollination service of wild and managed pollinators, using field beans as a test case. The PSM allowed us to spatially characterize the contribution of wild and managed pollinators and also identify areas potentially vulnerable to low pollination service provision, which can help direct local scale interventions. This approach can be extended to investigate geographical mismatches between crop pollination demand and the availability of pollinators, resulting from environmental change or policy scenarios
The SECURE project – Stem canker of oilseed rape: : molecular methods and mathematical modelling to deploy durable resistance
N Evans et al, "The SECURE Project - Stem Canker of oilseed rape: Molecular methods and mathematical modeling to deploy durable resistance", in Vol 4 of the Proceedings of the 12th International Rapeseed Congress : Sustainable Development in Cruciferous Oilseed Crops Production, Wuhan, China, March 26 - 30, 2007. The proceedings are available online at: http://gcirc.org/intranet/irc-proceedings/12th-irc-wuhan-china-2007-vol-4.htmlModelling done during the SECURE project has demonstrated the dynamic nature of the interaction between phoma stem canker (Leptosphaeria maculans), the oilseed rape host (Brassica napus) and the environment. Experiments done with near-isogenic lines of L. maculans to investigate pathogen fitness support field data that suggest a positive effect of the avirulence allele AvrLm4 on pathogen fitness, and that the loss of this allele renders isolates less competitive under field conditions on cultivars without the resistance gene Rlm4. The highlight of molecular work was the cloning of AvrLm1 and AvrLm6. L. maculans is now one of the few fungal species for which two avirulence loci have been cloned. Subsequent research focused on understanding the function of AvrLm1 and AvrLm6 and on the analysis of sequences of virulent isolates to understand molecular evolution towards virulence. Isolates of L. maculans transformed with GFP and/or DsRed were used to follow growth of the fungus in B. napus near-isogenic-lines (NIL) with or without MX (Rlm6) resistance under different temperature and wetness conditions. The results greatly enhanced our knowledge of the infection process and the rate and extent of in planta growth on different cultivars. Conclusions from work to model durability of resistance have been tested under field conditions through a series of experiments to compare durability of resistance conferred by the major resistance gene Rlm6 alone in a susceptible background (EurolMX) or in a resistant background (DarmorMX) under recurrent selection over 4 growing seasons. A major priority of the project was knowledge transfer of results and recommendations to target audiences such as plant breeding companies and extension services. CETIOM developed a “diversification scheme” that encourages French growers to make an informed choice about the cultivars that are grown within the rotation based on the resistance genes carried by the individual cultivars. Use of such schemes, in association with survey data on the population structure of L. maculans at both national and European scales will provide opportunities for breeders and the industry to manage available B. napus resistance more effectively.Non peer reviewe
A perspective on the measurement of time in plant disease epidemiology
The growth and development of plant pathogens and their hosts generally respond strongly to the temperature of their environment. However, most studies of plant pathology record pathogen/host measurements against physical time (e.g. hours or days) rather than thermal time (e.g. degree-days or degree-hours). This confounds the comparison of epidemiological measurements across experiments and limits the value of the scientific literature
Elevated serum levels of soluble CD154 in children with juvenile idiopathic arthritis
<p>Abstract</p> <p>Objective</p> <p>Cytokines play important roles in mediating inflammation in autoimmunity. Several cytokines are elevated in serum and synovial fluid samples from children with Juvenile Idiopathic Arthritis (JIA). Soluble CD154 (sCD154) is elevated in other autoimmune disorders, but has not been characterized in JIA. Our objectives were to determine if sCD154 is elevated in JIA, and to examine correlations between sCD154 and other inflammatory cytokines.</p> <p>Methods</p> <p>Serum from 77 children with JIA and 81 pediatric controls was analyzed for interleukin (IL)1β, IL2, IL4, IL5, IL6, IL8, IL10, IL12, IL13, sCD154, interferon-γ (IFNγ), soluble IL2 receptor (sIL2R), and tumor necrosis factor-α (TNFα), using the Luminex Multi-Analyte Profiling system. Differences in levels of cytokines between cases and controls were analyzed. Logistic regression was also performed.</p> <p>Results</p> <p>sCD154 was significantly elevated in cases compared to controls (p < 0.0001). IL1β, IL5, IL6, IL8, IL13, IFNγ, sIL2R, and TNFα were also significantly elevated in JIA. Levels of sCD154 were highly correlated with IL1β, IL6, IL8, and TNFα (p < 0.0001). Logistic regression analysis suggested that IL6 (odds ratio (OR): 1.4, p < 0.0001), sCD154 (OR: 1.1, p < 0.0001), and TNFα (OR: 1.1, p < 0.005) were positively associated with JIA, while IL10 (OR: 0.5, p < 0.002) was protective. sCD154 was elevated in all JIA subtypes, with highest levels among more severe subtypes. IL1β, IL6, IL8, sIL2R and TNFα were also elevated in several JIA subtypes.</p> <p>Conclusion</p> <p>Serum levels of sCD154, IL1β, IL6, IL8, sIL2R and TNFα are elevated in most JIA subtypes, suggesting a major role for sCD154, and these cytokines and cytokine receptors in the pathogenesis of JIA.</p
Pervasiveness of Parasites in Pollinators
Many pollinator populations are declining, with large economic and ecological
implications. Parasites are known to be an important factor in the some of the
population declines of honey bees and bumblebees, but little is known about the
parasites afflicting most other pollinators, or the extent of interspecific
transmission or vectoring of parasites. Here we carry out a preliminary
screening of pollinators (honey bees, five species of bumblebee, three species
of wasp, four species of hoverfly and three genera of other bees) in the UK for
parasites. We used molecular methods to screen for six honey bee viruses,
Ascosphaera fungi, Microsporidia, and
Wolbachia intracellular bacteria. We aimed simply to detect
the presence of the parasites, encompassing vectoring as well as actual
infections. Many pollinators of all types were positive for
Ascosphaera fungi, while Microsporidia were rarer, being
most frequently found in bumblebees. We also detected that most pollinators were
positive for Wolbachia, most probably indicating infection with
this intracellular symbiont, and raising the possibility that it may be an
important factor in influencing host sex ratios or fitness in a diversity of
pollinators. Importantly, we found that about a third of bumblebees
(Bombus pascuorum and Bombus terrestris)
and a third of wasps (Vespula vulgaris), as well as all honey
bees, were positive for deformed wing virus, but that this virus was not present
in other pollinators. Deformed wing virus therefore does not appear to be a
general parasite of pollinators, but does interact significantly with at least
three species of bumblebee and wasp. Further work is needed to establish the
identity of some of the parasites, their spatiotemporal variation, and whether
they are infecting the various pollinator species or being vectored. However,
these results provide a first insight into the diversity, and potential
exchange, of parasites in pollinator communities
Long-term effects of immunocontraception on wild boar fertility, physiology and behaviour
Context. Fertility control appears as a publicly acceptable alternative to lethal methods for limiting population growth in wildlife. Recently developed single-dose immune-contraceptive vaccines have induced infertility in several mammals. However, the potential side-effects and the long-term effectiveness of these contraceptives have been poorly investigated.
Aims. We tested the long-term effectiveness and potential side-effects of the single-dose gonadotrophin-releasing hormone (GnRH) vaccine GonaCon™ on captive female wild boar.
Methods. We carried out two sequential trials: Trial 1 (n = 6 GonaCon™-treated and 6 control wild boar) and Trial 2 which started two years later and replicated Trial 1. We assessed the effectiveness of GonaConto cause infertility by measuring GnRH antibody titres, by monitoring the oestrous cycle through the concentration of faecal progesterone and by recording the sows’ reproductive output in the 4–6 years following treatment. We evaluated the potential side-effects by monitoring behaviour, bodyweight and haematological and biochemical variables.
Key results. GnRH-antibody titres decreased with time but were still detectable in all females six years after vaccination with a single dose of GonaCon™. In Trial 1 none of the treated females gave birth in the six years after vaccination. In Trial 2, progesterone indicated that two of the six treated females were cycling. One of the cycling treated females gave birth one year after vaccination; the other five, including the second cycling sow, did not reproduce in the four years following vaccination. We found no differences in bodyweight, haematology, biochemistry and behaviour and no obvious sign of injection site reaction.
Conclusions. GonaCon™can suppress reproduction in wild boar with no long-term effects on behaviour and physiology. Therefore, GonaCon™ can be regarded as an effective and safe contraceptive for this species.
Implications. The lack of evidence of adverse effects and the longevity of effect of GonaCon™ suggest that this contraceptive could be now tested in field trials and in contexts where culling of overabundant populations of wild boar is unfeasible, illegal or unacceptable. These instances include urban areas, parks, and management of diseases where culling might cause social perturbation and result in increased disease transmission rates
- …