108 research outputs found
Changes in magnetic resonance mammography due to hormone replacement therapy
BACKGROUND: The aim of the present article is to investigate effects of hormone replacement therapy (HRT) on contrast medium enhancement patterns in postmenopausal patients during magnetic resonance mammography (MRM). MATERIALS AND METHODS: Two hundred and fifteen patients receiving hormonal medication were divided into four groups: 150 patients with 1 MRM during HRT (group A), 13 patients with 2 MRMs under HRT (group B), 30 patients with 1 MRM during HRT and 1 MRM after HRT withdrawal (group C), and 22 women with 1 MRM after HRT withdrawal (group D). Dynamic MRM was performed at 1.5 Tesla. Signal intensity changes were characterized by five time curves: minimal enhancement (type I), weak continuous enhancement (type II), strong continuous enhancement (type III), and a steep initial slope followed by a plateau phenomenon (type IV) or a washout effect (type V). RESULTS: Of all 193 patients under HRT (group A + group B + group C), 60 patients (31.1%) showed curve type I, 88 patients (45.6%) showed type II and 45 patients (23.3%) showed type III. There were significant differences to 52 patients after HRT withdrawal (group C + group D) (P < 0.0001), with 42 patients (80.8%) for curve type I, 8 patients (15.4%) for type II, and 2 patients (3.8%) for type III. In both MRM sessions in group B, 69% of the patients showed identical curve types without significant differences (P = 0.375). In group C, 28 of 30 patients (93%) dropped to lower curve types with significant differences in curve types during and after HRT (P < 0.0001). CONCLUSION: The majority of patients receiving postmenopausal HRT showed bilateral symmetrical, continuous enhancement without evidence of a plateau phenomenon or a washout effect due to HRT in MRM. Hormonal effects could be proven and were reproducible and reversible
Reduced responsiveness is an essential feature of chronic fatigue syndrome: A fMRI study
BACKGROUND: Although the neural mechanism of chronic fatigue syndrome has been investigated by a number of researchers, it remains poorly understood. METHODS: Using functional magnetic resonance imaging, we studied brain responsiveness in 6 male chronic fatigue syndrome patients and in 7 age-matched male healthy volunteers. Responsiveness of auditory cortices to transient, short-lived, noise reduction was measured while subjects performed a fatigue-inducing continual visual search task. RESULTS: Responsiveness of the task-dependent brain regions was decreased after the fatigue-inducing task in the normal and chronic fatigue syndrome subjects and the decrement of the responsiveness was equivalent between the 2 groups. In contrast, during the fatigue-inducing period, although responsiveness of auditory cortices remained constant in the normal subjects, it was attenuated in the chronic fatigue syndrome patients. In addition, the rate of this attenuation was positively correlated with the subjective sensation of fatigue as measured using a fatigue visual analogue scale, immediately before the magnetic resonance imaging session. CONCLUSION: Chronic fatigue syndrome may be characterised by attenuation of the responsiveness to stimuli not directly related to the fatigue-inducing task
Megascopic Quantum Phenomena. A Critical Study of Physical Interpretations
A megascopic revalidation is offered providing responses and resolutions of
current inconsistencies and existing contradictions in present-day quantum
theory. As the core of this study we present an independent proof of the
Goldstone theorem for a quantum field formulation of molecules and solids.
Along with phonons two types of new quasiparticles appear: rotons and
translons. In full analogy with Lorentz covariance, combining space and time
coordinates, a new covariance is necessary, binding together the internal and
external degrees of freedom, without explicitly separating the centre-of-mass,
which normally applies in both classical and quantum formulations. The
generally accepted view regarding the lack of a simple correspondence between
the Goldstone modes and broken symmetries, has significant consequences: an
ambiguous BCS theory as well as a subsequent Higgs mechanism. The application
of the archetype of the classical spontaneous symmetry breaking, i.e. the
Mexican hat, as compared to standard quantum relations, i.e. the Jahn-Teller
effect, superconductivity or the Higgs mechanism, becomes a disparity. In
short, symmetry broken states have a microscopic causal origin, but transitions
between them have a teleological component. The different treatments of the
problem of the centre of gravity in quantum mechanics and in field theories
imply a second type of Bohr complementarity on the many-body level opening the
door for megascopic representations of all basic microscopic quantum axioms
with further readings for teleonomic megascopic quantum phenomena, which have
no microscopic rationale: isomeric transitions, Jahn-Teller effect, chemical
reactions, Einstein-de Haas effect, superconductivity-superfluidity, and
brittle fracture.Comment: 117 pages, 17 sections, final revised version from 20 May 2019 but
uploaded after the DOI was know
Semiconductor Spintronics
Spintronics refers commonly to phenomena in which the spin of electrons in a
solid state environment plays the determining role. In a more narrow sense
spintronics is an emerging research field of electronics: spintronics devices
are based on a spin control of electronics, or on an electrical and optical
control of spin or magnetism. This review presents selected themes of
semiconductor spintronics, introducing important concepts in spin transport,
spin injection, Silsbee-Johnson spin-charge coupling, and spindependent
tunneling, as well as spin relaxation and spin dynamics. The most fundamental
spin-dependent nteraction in nonmagnetic semiconductors is spin-orbit coupling.
Depending on the crystal symmetries of the material, as well as on the
structural properties of semiconductor based heterostructures, the spin-orbit
coupling takes on different functional forms, giving a nice playground of
effective spin-orbit Hamiltonians. The effective Hamiltonians for the most
relevant classes of materials and heterostructures are derived here from
realistic electronic band structure descriptions. Most semiconductor device
systems are still theoretical concepts, waiting for experimental
demonstrations. A review of selected proposed, and a few demonstrated devices
is presented, with detailed description of two important classes: magnetic
resonant tunnel structures and bipolar magnetic diodes and transistors. In most
cases the presentation is of tutorial style, introducing the essential
theoretical formalism at an accessible level, with case-study-like
illustrations of actual experimental results, as well as with brief reviews of
relevant recent achievements in the field.Comment: tutorial review; 342 pages, 132 figure
- …