48 research outputs found
Performance of clonal rootstocks for "BRS-Kampai" peach and own-rooted trees in a mild-winter region.
Abstract: The worldwide main peach-producing are adopting peach training systems with canopy size-controlling clonal rootstocks. However, most peach seedlings commercialised in Brazil are still on seed-propagated rootstocks, which are vigorous and heterogeneous. This study aimed to select rootstocks which induce desirable characteristics of fruit quality, yield efficiency, size control, adaptability and stability in the âBRS-Kampaiâ grown in subtropical regions with mild winters. We used adaptability and stability methodology and multivariate selection index to determine yield components and fruit quality. The experiment was conducted in five cycles. The treatments consisted of âBRS-Kampaiâ grafted onto 17 clonal rootstocks of Prunus spp. and own-rooted trees. The evaluated variables were yield per tree, yield per area, fruit mass, fruit diameter, fruit firmness, soluble solids content, titratable acidity, canopy volume and yield efficiency. The rootstocks âIshtaraÂźâ, âGenovesaâ, âSanta Rosaâ and âCadamanâ always induced low yield and low fruit quality when used as clonal rootstocks for the âBRS-Kampaiâ and showed no potential for use as rootstocks in subtropical humid regions with mild winters. The âBRS-Kampaiâ own-rooted peach trees or those grafted onto âFlordaguardâ, âOkinawaâ are alternatives for peach cultivation under the edaphoclimatic conditions of Pato Branco-PR, although the training and pruning systems must be adjusted due to high vigour. The clonal rootstocks âTsukuba-3â and âTsukuba-2â induced the highest production performance in the canopy cultivar BRS-Kampai, combining fruit quality, yield with higher stability, and yield efficiency making them the most suitable ones among the studied rootstocks. Resumo: Sistemas de condução de pessegueiros com porta-enxertos clonais que reduzem vigor da copa sĂŁo os mais adotados mundialmente. Entretanto, no Brasil ainda se utiliza porta-enxertos propagados por sementes, que sĂŁo vigorosos e heterogĂȘneos. Este trabalho teve como objetivo selecionar porta-enxertos que induzam qualidade de frutos, eficiĂȘncia produtiva, controle de vigor, adaptabilidade e estabilidade em âBRS-Kampaiâ cultivada em regiĂ”es subtropicais com invernos amenos. Foram utilizadas metodologias de adaptabilidade e estabilidade e Ăndice de seleção multivariada para determinar os componentes de produção e qualidade dos frutos. O experimento foi conduzido em cinco ciclos. Os tratamentos consistiram de pessegueiro âBRS-Kampaiâ autoenraizado ou enxertado em 17 porta-enxertos clonais de Prunus spp. As variĂĄveis avaliadas foram produção por planta, produtividade por ĂĄrea, massa de frutos, diĂąmetro e firmeza de frutos, teor de sĂłlidos solĂșveis, acidez titulĂĄvel, volume de copa e eficiĂȘncia produtiva. Em regiĂ”es subtropicais com invernos âIshtaraÂźâ, âGenovesaâ, âSanta Rosaâ e âCadamanâ induziram baixa produtividade e baixa qualidade de frutos na âBRS-Kampaiâ e nĂŁo apresentam potencial para uso como porta-enxertos. âBRS-Kampaiâ autoenraizadas ou enxertadas em âFlordaguardâ e âOkinawaâ sĂŁo alternativas para o cultivo do pessegueiro, embora os sistemas de condução e poda devam ser ajustados devido ao alto vigor. Os porta-enxertos clonais âTsukuba-3â e âTsukuba-2â induziram o maior desempenho produtivo na âBRS-Kampaiâ, aliando qualidade de frutos, produtividade com maior estabilidade e eficiĂȘncia produtiva tornando-os os mais indicados entre os porta-enxertos estudados.TĂtulo em portuguĂȘs: Desempenho de porta-enxertos clonais para pessegueiro 'BRS-Kampai'e autoenraizado em regiĂŁo de inverno ameno
AGE-RELATED CHANGES IN DYSTROPHIN-GLYCOPROTEIN COMPLEX AND IN UTROPHIN ARE NOT CORRELATED WITH INTRINSIC LARYNGEAL MUSCLES PROTECTION IN mdx MICE
Coordenação de Aperfeiçoamento de Pessoal de NĂvel Superior (CAPES)Conselho Nacional de Desenvolvimento CientĂfico e TecnolĂłgico (CNPq)In this study we investigate whether dystrophic intrinsic laryngeal muscles (ILM) from aged mdx mice show alterations in dystrophin-glycoprotein complex (DGC) components. Immunofluorescence and immunoblotting analyses of beta-sarcoglycan, beta-dystroglycan, and utrophin showed that aged ILM had a similar pattern of changes in aged affected muscles (diaphragm and limb), suggesting that aging leads to changes in utrophin and DGC proteins in dystrophic ILM that cannot be correlated with their protection from dystrophic change. Muscle Nerve 44: 978-980, 2011446978980Fundaco de Amparo Pesquisa do Estado de Sao Paulo [04/15526-9, 08/58491-1]Coordenação de Aperfeiçoamento de Pessoal de NĂvel Superior (CAPES)Conselho Nacional de Pesquisas [302006/2009-5, 301306/2010-9, 474708/06-3]Conselho Nacional de Desenvolvimento CientĂfico e TecnolĂłgico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de NĂvel Superior (CAPES)Conselho Nacional de Desenvolvimento CientĂfico e TecnolĂłgico (CNPq)Fundaco de Amparo Pesquisa do Estado de Sao Paulo [04/15526-9, 08/58491-1]Conselho Nacional de Pesquisas [302006/2009-5, 301306/2010-9, 474708/06-3]CNPq [143170/08-2
Sarcoplasmic-endoplasmic-reticulum Ca2+-atpase And Calsequestrin Are Overexpressed In Spared Intrinsic Laryngeal Muscles Of Dystrophin-deficient Mdx Mice
In the mdx mouse model of Duchenne muscular dystrophy, the lack of dystrophin is associated with increased calcium levels and skeletal muscle myonecrosis. The intrinsic laryngeal muscles (ILM) are protected and do not undergo myonecrosis. We investigated whether this protection is related to an increased expression of calcium-binding proteins, which may protect against the elevated calcium levels seen in dystrophic fibers. The expression of sarcoplasmic-endoplasmic-reticulum Ca2+-ATPase and calsequestrin was examined in ILM and in nonspared limb muscles of control and mdx mice using immunofluorescence and immunoblotting. Dystrophic ILM presented a significant increase in the proteins studied when compared to controls. The increase of Ca2+-handling proteins in dystrophic ILM may permit better maintenance of calcium homeostasis, with the consequent absence of myonecrosis. The results further support the concept that abnormal Ca2+-handling is involved in dystrophinopathies. © 2009 Wiley Periodicals, Inc.395609615Alderton, J.M., Steinhardt, R.A., Calcium influx through calcium leak channels is responsible for the elevated levels of calcium-dependent proteolysis in dystrophic myotubes (2000) Journal of Biological Chemistry, 275 (13), pp. 9452-9460. , DOI 10.1074/jbc.275.13.9452Andrade, F.H., Porter, J.D., Kaminski, H.J., Eye muscle sparing by the muscular dystrophies: Lessons to be learned? (2000) Microsc Res Tech, 48, pp. 192-203Arai, M., Otsu, K., MacLennan, D.H., Periasamy, M., Regulation of sarcoplasmic reticulum gene expression during cardiac and skeletal muscle development (1992) Am J Physiol Cell Physiol, 262, pp. C614-C620Beard, N.A., Laver, D.R., Dulhunty, A.F., Calsequestrin and the calcium release channel of skeletal and cardiac muscle (2004) Progress in Biophysics and Molecular Biology, 85 (1), pp. 33-69. , DOI 10.1016/j.pbiomolbio.2003.07.001, PII S0079610703000774Blank, J.M., Schachat, F., Extraocular and laryngeal muscles exhibit differential amplification of protein involved in calcium homeostasis (1999) Mol Biol Cell, 10, pp. 246ABodensteiner, J.B., Engel, A.G., Intracellular calcium accumulation in Duchenne dystrophy and other myopathies: A study of 567,000 muscle fibers in 114 biopsies (1978) Neurology, 28 (5), pp. 439-446Brandl, C.J., De Leon, S., Martin, D.R., MacLennan, D.H., Adult forms of the Ca2+ ATPase of sarcoplasmic reticulum. Expression in developing skeletal muscle (1978) J Biol Chem, 262, pp. 3768-3774Brennan, T.J., Edmondson, D.G., Olson, E.N., Aberrant regulation of MyoD1 contributes to the partially defective myogenic phenotype of BC3H1 cells (1990) Journal of Cell Biology, 110 (4), pp. 929-937Bulfield, G., Siller, W.G., Wigth, P.A.L., Moore, K.J.X., Chromosome-like muscular dystrophy (mdx) in the mouse (1984) Proc Natl Acad Sci U S A, 81, pp. 1189-1192Carlsen, H., Gundersen, K., Helix-loop-helix transcription factors in electrically active and inactive skeletal muscles (2000) Muscle Nerve, 23, pp. 1374-1380Celio, M.R., Heizmann, C.W., Calcium-binding protein parvalbumin as a neuronal marker (1981) Nature, 293 (5830), pp. 300-302. , DOI 10.1038/293300a0Culligan, K., Banville, N., Dowling, P., Ohlendieck, K., Drastic reduction of calsequestrin-like proteins and impaired calcium binding in dystrophic mdx muscle (2002) Journal of Applied Physiology, 92 (2), pp. 435-445Divet, A., Huchet-Cadiou, C., Sarcoplasmic reticulum function in slow- and fast-twitch skeletal muscles from mdx mice (2002) Eur J Physiol, 444, pp. 634-643Doran, P., Dowling, P., Donoghue, P., Buffini, M., Ohlendieck, K., Reduced expression of regucalcin in young and aged mdx diaphragm indicates abnormal cytosolic calcium handling in dystrophin-deficient msucle (2006) Biochem Biophys Acta, 1764, pp. 773-785Doran, P., Dowling, P., Lohan, J., McDonnell, K., Poetsch, S., Ohlendieck, K., Subproteomics analysis of Ca2+-binding proteins demonstrates decreased calsequestrin expression in dystrophic mouse skeletal muscle (2004) Eur J Biochem, 271, pp. 3943-3952Dowling, P., Doran, P., Ohlendieck, K., Drastic reduction of sarcalumenin in Dp427 (dystrophin of 427 kDa)-deficient fibres indicates that abnormal calcium handling plays a key role in muscular dystrophy (2004) Biochemical Journal, 379 (2), pp. 479-488. , DOI 10.1042/BJ20031311Dowling, P., Lohan, J., Ohlendieck, K., Comparative analysis of Dp427-deficient mdx tissues shows that the milder dystrophic phenotype of extraocular and toe muscle fibres is associated with a persistent expression of beta-dystroglycan (2003) European Journal of Cell Biology, 82 (5), pp. 222-230. , DOI 10.1078/0171-9335-00315Engel, A.G., Yamamoto, M., Fischbeck, K.H., Muscular dystrophies (1994) Myology, pp. 1133-1187. , Engel AG, Franzini-Armstrong C, editors. New York: McGraw-HillGailly, P., New aspects of calcium signaling in skeletal muscle cells: Implications in Duchenne muscular dystrophy (2002) Biochem Biophys Acta, 1600, pp. 38-44Goding Jr., G.S., Al-Sharif, K.I., McLoon, L.K., Myonuclear addition to uninjured laryngeal myofibers in adult rabbits (2005) Ann Otol Rhinol Laryngol., 114, pp. 552-557Han, R., Grounds, M.D., Bakker, A.J., Measurements of sub-membrane [Ca2+] in adult myofiber and cytosolic [Ca2+] in myotubes from normal and mdx mice using the Ca2+ indicator FFP-18 (2006) Cell Calcium, 40, pp. 299-307Haslett, J.N., Kang, P.B., Han, M., Kho, A., Sanoudou, D., Volinski, J.M., The influence of muscle type and dystrophin deficiency on murine expression profiles (2005) Mamm Genome, 16, pp. 739-748Hodgetts, S., Radley, H., Davies, M., Grounds, M.D., Reduced necrosis of dystrophic muscle by depletion of host neutrophils, or blocking TNF alpha function with Etanercept in mdx mice (2006) Neuromuscular Disorders, 16 (9-10), pp. 591-602. , DOI 10.1016/j.nmd.2006.06.011, PII S0960896606004457Hoffman, E.P., Brown Jr., R.H., Kunkel, L.M., Dystrophin: The protein product of the Duchenne muscular dystrophy locus (1987) Cell, 51 (6), pp. 919-928. , DOI 10.1016/0092-8674(87)90579-4Hoh, J.F.Y., Laryngeal muscle fibre types (2005) Acta Physiologica Scandinavica, 183 (2), pp. 133-149. , DOI 10.1111/j.1365-201X.2004.01402.xKarpati, G., Carpenter, S., Prescott, S., Small-caliber skeletal muscle fibers do not suffer necrosis in mdx mouse dystrophy (1988) Muscle and Nerve, 11 (8), pp. 795-803. , DOI 10.1002/mus.880110802Khurana, T.S., Prendergast, R.A., Alameddine, H.S., Tomé, F.M., Fardeau, M., Arahata, K., Absence of extraocular muscle pathology in Duchenne's muscular dystrophy: Role for calcium homeostasis in extraocular muscle sparing (1995) J Exp Med, 182, pp. 467-474Lucas, C.A., Rughani, A., Hoh, J.F.Y., Expression of extraocular myosin heavy chain in rabbit laryngeal muscle (1995) J Muscle Res Cell Motil, 16, pp. 368-378Lyons, P.R., Slater, C.R., Structure and function of the neuromuscular junction in young adult mdx mice (1991) J Neurocytol, 20, pp. 969-981Marques, M.J., Ferretti, R., Vomero, V.U., Minatel, E., Neto, H.S., Intrinsic laryngeal muscles are spared from myonecrosis in the mdx mouse model of Duchenne muscular dystrophy (2007) Muscle and Nerve, 35 (3), pp. 349-353. , DOI 10.1002/mus.20697Marques, M.J., Pertille, A., Carvalho, C.L.T., Santo Neto, H., Acetylcholine receptor organization at the dystrophic extraocular muscle neuromuscular junction (2007) Anat Rec, 290, pp. 846-854McLoon, L.K., Thorstenson, K.M., Solomon, A., Lewis, M.P., Myogenic precursor cells in craniofacial muscles (2007) Oral Diseases, 13 (2), pp. 134-140. , DOI 10.1111/j.1601-0825.2006.01353.xPan, Y., Zvaritch, E., Tupling, R., Rice, W.J., De Leon, S., Rudnicki, M., Targeted disruption of the ATP2A1 gene encoding the sarco(endo)plasmic reticulum Ca2+ ATPase isoform 1 (SERCA1) impairs diaphragm function and is lethal in neonatal mice (2003) J Biol Chem, 278, pp. 13367-13375Pastoret, C., Sebille, A., mdx mice show progressive weakness and muscle deterioration with age (1995) J Neurol Sci, 129, pp. 97-105Petrof, B.J., Shrager, J.B., Stedman, H.H., Kelly, A.M., Sweeney, H.L., Dystrophin protects the sarcolemma from stresses developed during muscle contraction (1993) Proceedings of the National Academy of Sciences of the United States of America, 90 (8), pp. 3710-3714Porter, J.D., Baker, R.S., Muscles of a different 'color': The unusual properties of the extraocular muscles may predispose or protect them in neurogenic and myogenic disease (1996) Neurology, 46 (1), pp. 30-37Porter Jr., G.A., Makuck, R.F., Rivkees, A.A., Reduction in intracellular calcium levels inhibits myoblast differentiation (2002) J Biol Chem, 277, pp. 28942-28947Porter, J.D., Rafael, J.A., Ragusa, R.J., Brueckner, J.K., Trickett, J.I., Davies, K.E., The sparing of extraocular muscle is lost in mice lacking utrophin and dystrophin (1998) J Cell Sci, 111, pp. 1801-1811Rossi, A.E., Dirksen, R.T., Sarcoplasmic reticulum: The dynamic calcium governor of muscle (2006) Muscle and Nerve, 33 (6), pp. 715-731. , DOI 10.1002/mus.20512Sicinski, P., Geng, Y., Ryder-Cook, A.S., Barnard, E.A., Darlison, M.G., Barnard, P.J., The molecular basis of muscular dystrophy in the mdx mouse: A point mutation (1989) Science, 244 (4912), pp. 1578-1580Stedman, H.H., Sweeney, H.L., Shrager, J.B., Maguire, H.C., Panettieri, R.A., Petrof, B., The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy (1991) Nature, 352, pp. 536-539Tidball, J.G., Spencer, M.J., Calpains and muscular dystrophies (2000) International Journal of Biochemistry and Cell Biology, 32 (1), pp. 1-5. , DOI 10.1016/S1357-2725(99)00095-3, PII S1357272599000953Torres, L.F., Duchen, L.W., The mutant mdx: Inherited myopathy in the mouse. Morphological studies of nerves, muscle and end-plates (1987) Brain, 110, pp. 269-299Turner, P.R., Fong, P., Denetclaw, W.F., Steinhardt, R.A., Increased calcium influx in dystrophic muscle (1991) Journal of Cell Biology, 115 (6), pp. 1701-1712Vandebrouck, A., Sabourin, J., Rivet, J., Balghi, H., Sebille, S., Kitzis, A., Regulation of capacitative calcium entries by alpha1-syntrophin: Association of TRPC1 with dystrophin complex and the PDZ domain of alpha1-syntrophin (2007) FASEB J, 21, pp. 608-617Whitehead, N.P., Yeung, E.W., Allen, D.G., Muscle damage in mdx (dystrophic) mice: Role of calcium and reactive oxygen species (2006) Clinical and Experimental Pharmacology and Physiology, 33 (7), pp. 657-662. , DOI 10.1111/j.1440-1681.2006.04394.xYoshida, M., Minamisawa, S., Shimura, M., Komazaki, S., Kume, H., Zhang, M., Impaired Ca2+ store functions in skeletal and cardiac muscle cells from sarcalumenin-deficient mice (2005) J Biol Chem, 280, pp. 3500-3506Zador, E., Vangheluwe, P., Wuytack, F., The expression of the neonatal sarcoplasmic reticulum Ca2+ pump (SERCA1b) hints to a role in muscle growth and development (2007) Cell Calcium, 41 (4), pp. 379-388. , DOI 10.1016/j.ceca.2006.08.001, PII S014341600600163
Acetylcholine receptor organization at the dystrophic extraocular muscle neuromuscular junction
Spared extraocular muscles of dystrophic mice are not subjected to regeneration process and can be used to verify whether the lack of dystrophin per se could cause changes in acetylcholine receptor (AChR) distribution. In the present study, rectus and oblique (spared) and retractor bulbi (nonspared) muscles were dissected from adult control (C57Bl/10) and mdx mice. AChRs and nerve terminals were labeled with rhodamine-a-bungarotoxin and anti-NF200-IgG-FITC, respectively, and visualized by confocal microscopy. Rectus and oblique muscles presented 0.5% central nucleation, while retractor bulbi had central nucleation in 45% of muscle fibers. In mdx rectus, AChRs were distributed in branches in 99% of the junctions examined (n = 200), similar to that observed for controls. Nerve terminals covered the AChR branches in 100% of the junctions examined. In control retractor bulbi, AChRs were distributed in regular branches. In mdx retractor bulbi, multiple fragmented islands of receptors were seen in 56% of the endplates examined (n = 200). These results suggest that the lack of dystrophin per se does not influence the distribution of acetylcholine receptors at the neuromuscular junction of spared extraocular muscles.290784685