117 research outputs found
Dengue fever in pregnancy: a case report
<p>Abstract</p> <p>Background</p> <p>Dengue, a mosquito-borne flavivirus infection, is endemic in Southeast Asia. Currently, the incidence has been increasing among adults.</p> <p>Case presentation</p> <p>A 26-year-old Thai woman, G<sub>1</sub>P<sub>0</sub> 31 weeks pregnancy, presented with epigastric pain for 1 day. She also had a high-grade fever for 4 days. The physical examination, complete blood counts as well as serology confirmed dengue fever. The patient was under conservative treatment despite severe thrombocytopenia. She was well at the 3<sup>rd</sup> day of discharge and 1-week follow-up. The pregnancy continued until term without any complication and she delivered vaginally a healthy female baby.</p> <p>Conclusions</p> <p>More cases of dengue infection in pregnancy can be found due to the increasing incidence during adulthood. It should be suspected when a pregnant woman presents with symptoms and signs like in a non-pregnant. Conservative treatment should be conducted unless there are any complications.</p
Dengue Deaths in Puerto Rico: Lessons Learned from the 2007 Epidemic
Dengue is a major public health problem in the tropics and subtropics; an estimated 50 million cases occur annually and 40 percent of the world's population lives in areas with dengue virus (DENV) transmission. Dengue has a wide range of clinical presentations from an undifferentiated acute febrile illness, classic dengue fever, to severe dengue (i.e., dengue hemorrhagic fever or dengue shock syndrome). About 5% of patients develop severe dengue, which is more common with second or subsequent infections. No vaccines are available to prevent dengue, and there are no specific antiviral treatments for patients with dengue. However, early recognition of shock and intensive supportive therapy can reduce risk of death from ∼10% to less than 1% among severe dengue cases. Reviewing dengue deaths is one means to identify issues in clinical management. These findings can be used to develop healthcare provider education to minimize dengue morbidity and mortality
Endurance, Refuge, and Reemergence of Dengue Virus Type 2, Puerto Rico, 1986–2007
To study the evolution of dengue virus (DENV) serotype 2 in Puerto Rico, we examined the genetic composition and diversity of 160 DENV-2 genomes obtained through 22 consecutive years of sampling. A clade replacement took place in 1994–1997 during a period of high incidence of autochthonous DENV-2 and frequent, short-lived reintroductions of foreign DENV-2. This unique clade replacement was complete just before DENV-3 emerged. By temporally and geographically defining DENV-2 lineages, we describe a refuge of this virus through 4 years of low genome diversity. Our analyses may explain the long-term endurance of DENV-2 despite great epidemiologic changes in disease incidence and serotype distribution
Prediction of Dengue Disease Severity among Pediatric Thai Patients Using Early Clinical Laboratory Indicators
Patients with severe dengue illness typically develop complications in the later stages of illness, making early clinical management of all patients with suspected dengue infection difficult. An early prediction tool to identify which patients will have a severe dengue illness will improve the utilization of limited hospital resources in dengue endemic regions. We performed classification and regression tree (CART) analysis to establish predictive algorithms of severe dengue illness. Using a Thai hospital pediatric cohort of patients presenting within the first 72 hours of a suspected dengue illness, we developed diagnostic decision algorithms using simple clinical laboratory data obtained on the day of presentation. These algorithms correctly classified near 100% of patients who developed a severe dengue illness while excluding upwards of 50% of patients with mild dengue or other febrile illnesses. Our algorithms utilized white blood cell counts, percent white blood cell differentials, platelet counts, elevated aspartate aminotransferase, hematocrit, and age. If these algorithms can be validated in other regions and age groups, they will help in the clinical management of patients with suspected dengue illness who present within the first three days of fever onset
Confirmed adult dengue deaths in Singapore: 5-year multi-center retrospective study
10.1186/1471-2334-11-123BMC Infectious Diseases11-BIDM
Economic Cost of Dengue in Puerto Rico
Dengue, endemic in Puerto Rico, reached a record high in 2010. To inform policy makers, we derived annual economic cost. We assessed direct and indirect costs of hospitalized and ambulatory dengue illness in 2010 dollars through surveillance data and interviews with 100 laboratory-confirmed dengue patients treated in 2008–2010. We corrected for underreporting by using setting-specific expansion factors. Work absenteeism because of a dengue episode exceeded the absenteeism for an episode of influenza or acute otitis media. From 2002 to 2010, the aggregate annual cost of dengue illness averaged 46.45 million ($12.47 per capita)
Reliable Classifier to Differentiate Primary and Secondary Acute Dengue Infection Based on IgG ELISA
Dengue virus infection causes a wide spectrum of illness, ranging from sub-clinical to severe disease. Severe dengue is associated with sequential viral infections. A strict definition of primary versus secondary dengue infections requires a combination of several tests performed at different stages of the disease, which is not practical.We developed a simple method to classify dengue infections as primary or secondary based on the levels of dengue-specific IgG. A group of 109 dengue infection patients were classified as having primary or secondary dengue infection on the basis of a strict combination of results from assays of antigen-specific IgM and IgG, isolation of virus and detection of the viral genome by PCR tests performed on multiple samples, collected from each patient over a period of 30 days. The dengue-specific IgG levels of all samples from 59 of the patients were analyzed by linear discriminant analysis (LDA), and one- and two-dimensional classifiers were designed. The one-dimensional classifier was estimated by bolstered resubstitution error estimation to have 75.1% sensitivity and 92.5% specificity. The two-dimensional classifier was designed by taking also into consideration the number of days after the onset of symptoms, with an estimated sensitivity and specificity of 91.64% and 92.46%. The performance of the two-dimensional classifier was validated using an independent test set of standard samples from the remaining 50 patients. The classifications of the independent set of samples determined by the two-dimensional classifiers were further validated by comparing with two other dengue classification methods: hemagglutination inhibition (HI) assay and an in-house anti-dengue IgG-capture ELISA method. The decisions made with the two-dimensional classifier were in 100% accordance with the HI assay and 96% with the in-house ELISA.Once acute dengue infection has been determined, a 2-D classifier based on common dengue virus IgG kits can reliably distinguish primary and secondary dengue infections. Software for calculation and validation of the 2-D classifier is made available for download
Decision Tree Algorithms Predict the Diagnosis and Outcome of Dengue Fever in the Early Phase of Illness
Dengue illness appears similar to other febrile illness, particularly in the early stages of disease. Consequently, diagnosis is often delayed or confused with other illnesses, reducing the effectiveness of using clinical diagnosis for patient care and disease surveillance. To address this shortcoming, we have studied 1,200 patients who presented within 72 hours from onset of fever; 30.3% of these had dengue infection, while the remaining 69.7% had other causes of fever. Using body temperature and the results of simple laboratory tests on blood samples of these patients, we have constructed a decision algorithm that is able to distinguish patients with dengue illness from those with other causes of fever with an accuracy of 84.7%. Another decision algorithm is able to predict which of the dengue patients would go on to develop severe disease, as indicated by an eventual drop in the platelet count to 50,000/mm3 blood or below. Our study shows a proof-of-concept that simple decision algorithms can predict dengue diagnosis and the likelihood of developing severe disease, a finding that could prove useful in the management of dengue patients and to public health efforts in preventing virus transmission
Quantifying the Spatial Dimension of Dengue Virus Epidemic Spread within a Tropical Urban Environment
Global trends in population growth and human redistribution and movement have reshaped the map of dengue transmission risk, exposing a significant proportion of the world's population to the threat of dengue epidemics. Knowledge on the relative contribution of vector and human movement to the widespread and explosive nature of dengue epidemic spread within an urban environment is limited. By analyzing a very detailed dataset of a dengue epidemic that affected the Australian city of Cairns we performed a comprehensive quantification of the spatio-temporal dimensions of dengue virus epidemic transmission and propagation within a complex urban environment. Space and space-time analysis and models allowed derivation of detailed information on the pattern of introduction and epidemic spread of dengue infection within the urban space. We foresee that some of the results and recommendations derived from our study may also be applicable to many other areas currently affected or potentially subject to dengue epidemics
- …