11,061 research outputs found

    Gribov ambiguities at the Landau -- maximal Abelian interpolating gauge

    Get PDF
    In a previous work, we presented a new method to account for the Gribov ambiguities in non-Abelian gauge theories. The method consists on the introduction of an extra constraint which directly eliminates the infinitesimal Gribov copies without the usual geometric approach. Such strategy allows to treat gauges with non-hermitian Faddeev-Popov operator. In this work, we apply this method to a gauge which interpolates among the Landau and maximal Abelian gauges. The result is a local and power counting renormalizable action, free of infinitesimal Gribov copies. Moreover, the interpolating tree-level gluon propagator is derived.Comment: Several changes: figures removed, typos corrected and discussions included. 24 pages, to appear in EPJ

    On the elimination of infinitesimal Gribov ambiguities in non-Abelian gauge theories

    Full text link
    An alternative method to account for the Gribov ambiguities in gauge theories is presented. It is shown that, to eliminate Gribov ambiguities, at infinitesimal level, it is required to break the BRST symmetry in a soft manner. This can be done by introducing a suitable extra constraint that eliminates the infinitesimal Gribov copies. It is shown that the present approach is consistent with the well established known cases in the literature, i.e., the Landau and maximal Abelian gauges. The method is valid for gauges depending exclusively on the gauge field and is restricted to classical level. However, occasionally, we deal with quantum aspects of the technique, which are used to improve the results.Comment: 29 pp. No figures. Discussions added. Final version to appear in EPJ

    Simulation of Transport and Gain in Quantum Cascade Lasers

    Full text link
    Quantum cascade lasers can be modeled within a hierarchy of different approaches: Standard rate equations for the electron densities in the levels, semiclassical Boltzmann equation for the microscopic distribution functions, and quantum kinetics including the coherent evolution between the states. Here we present a quantum transport approach based on nonequilibrium Green functions. This allows for quantitative simulations of the transport and optical gain of the device. The division of the current density in two terms shows that semiclassical transitions are likely to dominate the transport for the prototype device of Sirtori et al. but not for a recent THz-laser with only a few layers per period. The many particle effects are extremely dependent on the design of the heterostructure, and for the case considered here, inclusion of electron-electron interaction at the Hartree Fock level, provides a sizable change in absorption but imparts only a minor shift of the gain peak.Comment: 12 pages, 5 figures included, to appear in in "Advances in Solid State Physics", ed. by B. Kramer (Springer 2003

    THz intervalence band antipolaritons

    Get PDF
    THz polaritons and antipolaritons have strong potential for device applications and are a challenging field of fundamental studies. In this paper, we start from a numerically exact nonequilibrium many body solutions and adjust it to a simplified nonlinear dielectric constant approach to the optical susceptibility. The resulting expression is inserted in the wave equation to describe the coupling of TE-polarized THz radiation with an intervalence band transition in GaAs/Al0.3Ga0.7As multiple quantum wells embedded in microcavities. The energy dispersions relations leading to THz polaritons are investigated. Here we focus on the impact of dephasing and scattering processes for different structures and excitation conditions in an inverted medium leading to antipolaritons

    Anisotropy and nonlinearity in superlattices

    Get PDF
    This paper uses analytical expressions for the nonlinear optical absorption of superlattices by treating them as anisotropic media. The controllable system shows that the nonlinearities increase with anisotropy suggesting that strongly anisotropic materials such as those used for solar cells may also be useful for nonlinear optical applications

    Simulations of mid infrared emission of InAsN semiconductors

    Get PDF
    This paper delivers an approximation to the complex many body problem of luminescence in semiconductors to the case of mid infrared luminescence of dilute nitrides. The results are compared with recent experimental data for InAsN semiconductors

    Simplified model for the energy levels of quantum rings in single layer and bilayer graphene

    Full text link
    Within a minimal model, we present analytical expressions for the eigenstates and eigenvalues of carriers confined in quantum rings in monolayer and bilayer graphene. The calculations were performed in the context of the continuum model, by solving the Dirac equation for a zero width ring geometry, i.e. by freezing out the carrier radial motion. We include the effect of an external magnetic field and show the appearance of Aharonov-Bohm oscillations and of a non-zero gap in the spectrum. Our minimal model gives insight in the energy spectrum of graphene-based quantum rings and models different aspects of finite width rings.Comment: To appear in Phys. Rev.

    Snake states in graphene quantum dots in the presence of a p-n junction

    Full text link
    We investigate the magnetic interface states of graphene quantum dots that contain p-n junctions. Within a tight-binding approach, we consider rectangular quantum dots in the presence of a perpendicular magnetic field containing p-n, as well as p-n-p and n-p-n junctions. The results show the interplay between the edge states associated with the zigzag terminations of the sample and the snake states that arise at the p-n junction, due to the overlap between electron and hole states at the potential interface. Remarkable localized states are found at the crossing of the p-n junction with the zigzag edge having a dumb-bell shaped electron distribution. The results are presented as function of the junction parameters and the applied magnetic flux.Comment: 13 pages, 23 figures, to be appeared in Phys. Rev.

    A publicação científica na atualidade

    Full text link
    corecore