14 research outputs found

    Molecular phylogeny and structure prediction of rice RFT1 protein

    Get PDF
    Rice is one of the most important species in the family of Poaceae. As one of the major crop that is consumed by world population, it is cultivated commercially in many parts of the world. Hence, the phylogeny study of this crop is crucial as a step for improvement of its breeding programs. Phylogenetic relationship among 12 rice cultivars that originated from two common sub-species; Indica and Japonica were inferred by comparing protein sequence data sets derived from its flowering time gene, namely RFT1 and analyzed using maximum parsimony (MP) method. The predicted structure of RFT1 protein was generated by I-TASSER server and analyzed using YASARA software. The result showed that the cultivars were classified into two major groups, where the first group (Japonica) evolved first followed by the second group (Indica). The findings suggested that some cultivars had a close relationship with each other even it is originates from different varieties. The relationships among these cultivars provide useful information for better understanding of molecular evolution process and designing good breeding program in order to generate new cultivar

    TS-AMIR: a topology string alignment method for intensive rapid protein structure comparison

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In structural biology, similarity analysis of protein structure is a crucial step in studying the relationship between proteins. Despite the considerable number of techniques that have been explored within the past two decades, the development of new alternative methods is still an active research area due to the need for high performance tools.</p> <p>Results</p> <p>In this paper, we present TS-AMIR, a Topology String Alignment Method for Intensive Rapid comparison of protein structures. The proposed method works in two stages: In the first stage, the method generates a topology string based on the geometric details of secondary structure elements, and then, utilizes an n-gram modelling technique over entropy concept to capture similarities in these strings. This initial correspondence map between secondary structure elements is submitted to the second stage in order to obtain the alignment at the residue level. Applying the Kabsch method, a heuristic step-by-step algorithm is adopted in the second stage to align the residues, resulting in an optimal rotation matrix and minimized RMSD. The performance of the method was assessed in different information retrieval tests and the results were compared with those of CE and TM-align, representing two geometrical tools, and YAKUSA, 3D-BLAST and SARST as three representatives of linear encoding schemes. It is shown that the method obtains a high running speed similar to that of the linear encoding schemes. In addition, the method runs about 800 and 7200 times faster than TM-align and CE respectively, while maintaining a competitive accuracy with TM-align and CE.</p> <p>Conclusions</p> <p>The experimental results demonstrate that linear encoding techniques are capable of reaching the same high degree of accuracy as that achieved by geometrical methods, while generally running hundreds of times faster than conventional programs.</p

    BCMA peptide-engineered nanoparticles enhance induction and function of antigen-specific CD8+ cytotoxic T lymphocytes against multiple myeloma: clinical applications

    No full text
    The purpose of these studies was to develop and characterize B-cell maturation antigen (BCMA)-specific peptide-encapsulated nanoparticle formulations to efficiently evoke BCMA-specific CD8+ cytotoxic T lymphocytes (CTL) with poly-functional immune activities against multiple myeloma (MM). Heteroclitic BCMA72-80 [YLMFLLRKI] peptide-encapsulated liposome or poly(lactic-co-glycolic acid) (PLGA) nanoparticles displayed uniform size distribution and increased peptide delivery to human dendritic cells, which enhanced induction of BCMA-specific CTL. Distinct from liposome-based nanoparticles, PLGA-based nanoparticles demonstrated a gradual increase in peptide uptake by antigen-presenting cells, and induced BCMA-specific CTL with higher anti-tumor activities (CD107a degranulation, CTL proliferation, and IFN-γ/IL-2/TNF-α production) against primary CD138+ tumor cells and MM cell lines. The improved functional activities were associated with increased Tetramer+/CD45RO+ memory CTL, CD28 upregulation on Tetramer+ CTL, and longer maintenance of central memory (CCR7+ CD45RO+) CTL, with the highest anti-MM activity and less differentiation into effector memory (CCR7- CD45RO+) CTL. These results provide the framework for therapeutic application of PLGA-based BCMA immunogenic&nbsp;peptide delivery system, rather than free peptide, to enhance the induction of BCMA-specific CTL with poly-functional Th1-specific anti-MM activities. These results demonstrate the potential clinical utility of PLGA nanotechnology-based cancer vaccine to enhance BCMA-targeted immunotherapy against myeloma
    corecore