106 research outputs found
Gating of high-mobility InAs metamorphic heterostructures
We investigate the performance of gate-defined devices fabricated on high
mobility InAs metamorphic heterostructures. We find that heterostructures
capped with InGaAs often show signs of parallel conduction
due to proximity of their surface Fermi level to the conduction band minimum.
Here, we introduce a technique that can be used to estimate the density of this
surface charge that involves cool-downs from room temperature under gate bias.
We have been able to remove the parallel conduction under high positive bias,
but achieving full depletion has proven difficult. We find that by using
InAlAs as the barrier without an InGaAs
capping, a drastic reduction in parallel conduction can be achieved. Our
studies show that this does not change the transport properties of the quantum
well significantly. We achieved full depletion in InAlAs capped
heterostructures with non-hysteretic gating response suitable for fabrication
of gate-defined mesoscopic devices
Observation of a topologically non-trivial surface state in half-Heusler PtLuSb (001) thin films.
The discovery of topological insulators, materials with bulk band gaps and protected cross-gap surface states in compounds such as Bi2Se3, has generated much interest in identifying topological surface states (TSSs) in other classes of materials. In particular, recent theoretical calculations suggest that TSSs may be found in half-Heusler ternary compounds. If experimentally realizable, this would provide a materials platform for entirely new heterostructure spintronic devices that make use of the structurally identical but electronically varied nature of Heusler compounds. Here we show the presence of a TSS in epitaxially grown thin films of the half-Heusler compound PtLuSb. Spin- and angle-resolved photoemission spectroscopy, complemented by theoretical calculations, reveals a surface state with linear dispersion and a helical tangential spin texture consistent with previous predictions. This experimental verification of topological behaviour is a significant step forward in establishing half-Heusler compounds as a viable material system for future spintronic devices
Optical and electrical spin injection and spin transport in hybrid Fe/GaAs devices
We discuss methods for imaging the nonequilibrium spin polarization of
electrons in Fe/GaAs spin transport devices. Both optically- and
electrically-injected spin distributions are studied by scanning
magneto-optical Kerr rotation microscopy. Related methods are used to
demonstrate electrical spin detection of optically-injected spin polarized
currents. Dynamical properties of spin transport are inferred from studies
based on the Hanle effect, and the influence of strain on spin transport data
in these devices is discussed.Comment: 5 pages, 6 figs. ICPS-28 proceedings (July'06, Vienna) for J. Appl.
Phy
- …