631 research outputs found
Short note on magnetic impurities in SmFeAsOF (x=0, 0.07) compounds revealed by zero-field As NMR
We have performed zero-field As nuclear magnetic resonance study of
SmFeAsOF (x=0, 0.07) polycrystals in a wide frequency range at
various temperatures. As resonance line was found at around 265 MHz
revealing the formation of the intermetallic FeAs clusters in the new layered
superconductors. We have also demonstrated that NMR is a sensitive tool for
probing the quality of these materials.Comment: Revised authorshi
Tetragonal to orthorhombic phase transition in SmFeAsO: a synchrotron powder diffraction investigation
The crystal structure of SmFeAsO has been investigated by means of Rietveld
refinement of high resolution synchrotron powder diffraction data collected at
300 K and 100 K. The compound crystallizes in the tetragonal P4/nmm space group
at 300 K and in the orthorhombic Cmma space group at 100 K; attempts to refine
the low temperature data in the monoclinic P112/n space group diverged. On the
basis of both resistive and magnetic analyses the tetragonal to orthorhombic
phase transition can be located at T about 140 K.Comment: Submitted to: Superconductor Science and Technology PACS: 61.05.cp,
61.66.Fn, 74.10.+v, 74.62.Dh, 74.70.D
Coupling between 4f and itinerant electrons in SmFeAsO1-xFx (0.15 < x < 0.2) superconductors: an NMR study
F NMR measurements in SmFeAsOF, for ,
are presented. The nuclear spin-lattice relaxation rate increases upon
cooling with a trend analogous to the one already observed in
CeCuAu, a quasi two-dimensional heavy-fermion intermetallic
compound with an antiferromagnetic ground-state. In particular, the behaviour
of the relaxation rate either in SmFeAsOF or in
CeCuAu can be described in the framework of the self-consistent
renormalization theory for weakly itinerant electron systems. Remarkably, no
effect of the superconducting transition on F is detected, a
phenomenon which can hardly be explained within a single band model.Comment: 4 figure
Role of Dirac cones in magnetotransport properties of REFeAsO (RE=rare earth) oxypnictides
In this work we study the effect of the rare earth element in iron
oxypnictides of composition REFeAsO (RE=rare earth). On one hand we carry out
Density Functional Theory calculations of the band structure, which evidence
the multiband character of these compounds and the presence of Dirac cones
along the Y-{\Gamma} and Z-R directions of the reciprocal space. On the other
hand, we explore transport behavior by means of resistivity, Hall resistance
and magnetoresistance measurements, which confirm the dominant role of Dirac
cones. By combining our theoretical and experimental approaches, we extract
information on effective masses, scattering rates and Fermi velocities for
different rare earth elements.Comment: 13 pages, 5 figures accepted for publication on European Journal of
Physics
Theoretical search for superconductivity in Sc3XB perovskites and weak ferromagnetism in Sc3X (X = Tl, In, Ga, Al)
A possibility for a new family of intermetallic perovskite superconductors
Sc3XB, with X = Tl, In, Ga and Al, is presented as a result of KKR electronic
structure and pseudopotential phonon calculations. The large values of computed
McMillan--Hopfield parameters on scandium suggest appearance of
superconductivity in Sc3XB compounds. On the other hand, the possibility of
weak itinerant ferromagnetic behavior of Sc3X systems is indicated by the small
magnetic moment on Sc atoms in two cases of X =~ l and In. Also the electronic
structure and resulting superconducting parameters for more realistic case of
boron--deficient systems Sc3XB_x are computed using KKR--CPA method, by
replacing boron atom with a vacancy. The comparison of the calculated
McMillan--Hopfield parameters of the Sc3XB series with corresponding values in
MgCNi3 and YRh3B superconductors is given, finding the favorable trends for
superconductivity.Comment: 13 pages, 13 figures. v3 - revise
Critical Field of MGB2 : Crossover from Clean to Dirty Regimes
We have studied the upper critical field, Bc2, in poly-crystalline MgB2
samples in which disorder was varied in a controlled way to carry selectively p
and s bands from clean to dirty limit. We have found that the clean regime
survives when p bands are dirty and s bands are midway between clean and dirty.
In this framework we can explain the anomalous behaviour of Al doped samples,
in which Bc2 decreases as doping increases.Comment: 11 pages, 2 figure
Significant enhancement of irreversibility field in clean-limit bulk MgB2
Low resistivity ("clean") MgB2 bulk samples annealed in Mg vapor show an
increase in upper critical field Hc2(T) and irreversibility field Hirr(T) by a
factor of 2 in both transport and magnetic measurements. The best sample
displayed Hirr above 14 T at 4.2 K and 6 T at 20 K. These changes were
accompanied by an increase of the 40 K resistivity from 1.0 to 18 microohm-cm
and a lowering of the resistivity ratio from 15 to 3, while the critical
temperature Tc decreased by only 1-2 K. These results point the way to make
prepare MgB2 attractive for magnet applications.Comment: 3 pages, 4 figures, submitted to Applied Physics Letter
Tuning topological disorder in MgB
We carried out Raman measurements on neutron-irradiated and Al-doped MgB
samples. The irradiation-induced topological disorder causes an unexpected
appearance of high frequency spectral structures, similar to those observed in
lightly Al-doped samples. Our results show that disorder-induced violations of
the selection rules are responsible for the modification of the Raman spectrum
in both irradiated and Al-doped samples. Theoretical calculations of the phonon
density of states support this hypothesis, and demonstrate that the high
frequency structures arise mostly from contributions at of the
E phonon mode.Comment: 4 pages, 4 figure
- …