703 research outputs found
Simulation Study of Sulfonate Cluster Swelling in Ionomers
We have performed simulations to study how increasing humidity affects the
structure of Nafion-like ionomers under conditions of low sulfonate
concentration and low humidity. At the onset of membrane hydration, the
clusters split into smaller parts. These subsequently swell, but then maintain
constant the number of sulfonates per cluster. We find that the distribution of
water in low-sulfonate membranes depends strongly on the sulfonate
concentration. For a relatively low sulfonate concentration, nearly all the
side-chain terminal groups are within cluster formations, and the average water
loading per cluster matches the water content of membrane. However, for a
relatively higher sulfonate concentration the water-to-sulfonate ratio becomes
non-uniform. The clusters become wetter, while the inter-cluster bridges become
drier. We note the formation of unusual shells of water-rich material that
surround the sulfonate clusters.Comment: 24 pages, 15 figure
Spin correlations in Ca3Co2O6: A polarised-neutron diffraction and Monte Carlo study
We present polarised-neutron diffraction measurements of the Ising-like
spin-chain compound Ca3Co2O6 above and below the magnetic ordering temperature
TN. Below TN, a clear evolution from a single-phase spin-density wave (SDW)
structure to a mixture of SDW and commensurate antiferromagnet (CAFM)
structures is observed on cooling. For a rapidly-cooled sample, the majority
phase at low temperature is the SDW, while if the cooling is performed
sufficiently slowly, then the SDW and the CAFM structure coexist between 1.5
and 10 K. Above TN, we use Monte Carlo methods to analyse the magnetic diffuse
scattering data. We show that both intra- and inter-chain correlations persist
above TN, but are essentially decoupled. Intra-chain correlations resemble the
ferromagnetic Ising model, while inter-chain correlations resemble the
frustrated triangular-lattice antiferromagnet. Using previously-published bulk
property measurements and our neutron diffraction data, we obtain values of the
ferromagnetic and antiferromagnetic exchange interactions and the single-ion
anisotropy.Comment: 10 pages, 7 figure
Orbital Dimer Model for Spin-Glass State in YMoO
The formation of a spin glass usually requires both structural disorder and
frustrated magnetic interactions. Consequently, the origin of spin-glass
behaviour in YMoO in which magnetic Mo ions occupy a
frustrated pyrochlore lattice with minimal compositional disorder has been
a longstanding question. Here, we use neutron and X-ray pair-distribution
function (PDF) analysis to develop a disorder model that resolves apparent
incompatibilities between previously-reported PDF, EXAFS and NMR studies and
provides a new and physical mechanism for spin-glass formation. We show that
Mo ions displace according to a local "2-in/2-out" rule on each Mo
tetrahedron, driven by orbital dimerisation of Jahn-Teller active Mo
ions. Long-range orbital order is prevented by the macroscopic degeneracy of
dimer coverings permitted by the pyrochlore lattice. Cooperative O
displacements yield a distribution of MoOMo angles, which in turn
introduces disorder into magnetic interactions. Our study demonstrates
experimentally how frustration of atomic displacements can assume the role of
compositional disorder in driving a spin-glass transition.Comment: 6 pages, 3 figure
Hierarchy of exchange interactions in the triangular-lattice spin-liquid YbMgGaO
The spin-1/2 triangular lattice antiferromagnet YbMgGaO has attracted
recent attention as a quantum spin-liquid candidate with the possible presence
of off-diagonal anisotropic exchange interactions induced by spin-orbit
coupling. Whether a quantum spin-liquid is stabilized or not depends on the
interplay of various exchange interactions with chemical disorder that is
inherent to the layered structure of the compound. We combine time-domain
terahertz spectroscopy and inelastic neutron scattering measurements in the
field polarized state of YbMgGaO to obtain better microscopic insights on
its exchange interactions. Terahertz spectroscopy in this fashion functions as
high-field electron spin resonance and probes the spin-wave excitations at the
Brillouin zone center, ideally complementing neutron scattering. A global
spin-wave fit to all our spectroscopic data at fields over 4T, informed by the
analysis of the terahertz spectroscopy linewidths, yields stringent constraints
on -factors and exchange interactions. Our results paint YbMgGaO as an
easy-plane XXZ antiferromagnet with the combined and necessary presence of
sub-leading next-nearest neighbor and weak anisotropic off-diagonal
nearest-neighbor interactions. Moreover, the obtained -factors are
substantially different from previous reports. This works establishes the
hierarchy of exchange interactions in YbMgGaO from high-field data alone
and thus strongly constrains possible mechanisms responsible for the observed
spin-liquid phenomenology
- …