142 research outputs found

    Unsplittable coverings in the plane

    Get PDF
    A system of sets forms an {\em mm-fold covering} of a set XX if every point of XX belongs to at least mm of its members. A 11-fold covering is called a {\em covering}. The problem of splitting multiple coverings into several coverings was motivated by classical density estimates for {\em sphere packings} as well as by the {\em planar sensor cover problem}. It has been the prevailing conjecture for 35 years (settled in many special cases) that for every plane convex body CC, there exists a constant m=m(C)m=m(C) such that every mm-fold covering of the plane with translates of CC splits into 22 coverings. In the present paper, it is proved that this conjecture is false for the unit disk. The proof can be generalized to construct, for every mm, an unsplittable mm-fold covering of the plane with translates of any open convex body CC which has a smooth boundary with everywhere {\em positive curvature}. Somewhat surprisingly, {\em unbounded} open convex sets CC do not misbehave, they satisfy the conjecture: every 33-fold covering of any region of the plane by translates of such a set CC splits into two coverings. To establish this result, we prove a general coloring theorem for hypergraphs of a special type: {\em shift-chains}. We also show that there is a constant c>0c>0 such that, for any positive integer mm, every mm-fold covering of a region with unit disks splits into two coverings, provided that every point is covered by {\em at most} c2m/2c2^{m/2} sets

    Six topics on inscribable polytopes

    Full text link
    Inscribability of polytopes is a classic subject but also a lively research area nowadays. We illustrate this with a selection of well-known results and recent developments on six particular topics related to inscribable polytopes. Along the way we collect a list of (new and old) open questions.Comment: 11 page

    Isoperimetric Inequalities in Simplicial Complexes

    Full text link
    In graph theory there are intimate connections between the expansion properties of a graph and the spectrum of its Laplacian. In this paper we define a notion of combinatorial expansion for simplicial complexes of general dimension, and prove that similar connections exist between the combinatorial expansion of a complex, and the spectrum of the high dimensional Laplacian defined by Eckmann. In particular, we present a Cheeger-type inequality, and a high-dimensional Expander Mixing Lemma. As a corollary, using the work of Pach, we obtain a connection between spectral properties of complexes and Gromov's notion of geometric overlap. Using the work of Gunder and Wagner, we give an estimate for the combinatorial expansion and geometric overlap of random Linial-Meshulam complexes

    Triangle-Free Penny Graphs: Degeneracy, Choosability, and Edge Count

    Full text link
    We show that triangle-free penny graphs have degeneracy at most two, list coloring number (choosability) at most three, diameter D=Ω(n)D=\Omega(\sqrt n), and at most min(2nΩ(n),2nD2)\min\bigl(2n-\Omega(\sqrt n),2n-D-2\bigr) edges.Comment: 10 pages, 2 figures. To appear at the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Premature ventricular contractions in patients with an implantable cardioverter defibrillator cardiac resynchronization therapy device: Results from the UMBRELLA registry

    Get PDF
    BACKGROUND: Premature ventricular contractions (PVC) are known to reduce the percentage of biventricular (BiV) pacing in patients with cardiac resynchronization (CRT), decreasing the clinical response. The aim of this study was to evaluate the prevalence of a high PVC burden, as well as therapeutic action (pharmacotherapy, catheter ablation or device programming), in a large CRT implantable-defibrillator (CRT-D) population. METHODS: Patients with a CRT-D device from the UMBRELLA multicenter prospective remote monitoring registry were included. The PVC count was collected from each remote monitoring transmission. Patients were divided into two high (>/=1 transmission >/=200/>/=400 PVC/h, respectively) and one low (all transmissions /=200/>/=400 PVC/h, respectively). The majority of patients in the high PVC groups were not treated (61 [79%] and 32 [74%], respectively. Considering the untreated patients in the high PVC groups, median PVC/h was 199 (interquartile range [IQR]: 196) and 271 (IQR: 330), respectively. The PVC burden (proportion of time with PVC/h >/= 200/>/=400) was 40% (IQR 70) and 29% (IQR 59), respectively. CONCLUSION: A significant proportion of CRT-D patients presented a high PVC count, however, few received treatment. In the untreated patients with a high PVC count, the PVC burden during follow-up varied substantially. Several consecutive recordings of a high PVC count should be warranted before considering therapeutic action such as catheter ablation

    Pixel and Voxel Representations of Graphs

    Full text link
    We study contact representations for graphs, which we call pixel representations in 2D and voxel representations in 3D. Our representations are based on the unit square grid whose cells we call pixels in 2D and voxels in 3D. Two pixels are adjacent if they share an edge, two voxels if they share a face. We call a connected set of pixels or voxels a blob. Given a graph, we represent its vertices by disjoint blobs such that two blobs contain adjacent pixels or voxels if and only if the corresponding vertices are adjacent. We are interested in the size of a representation, which is the number of pixels or voxels it consists of. We first show that finding minimum-size representations is NP-complete. Then, we bound representation sizes needed for certain graph classes. In 2D, we show that, for kk-outerplanar graphs with nn vertices, Θ(kn)\Theta(kn) pixels are always sufficient and sometimes necessary. In particular, outerplanar graphs can be represented with a linear number of pixels, whereas general planar graphs sometimes need a quadratic number. In 3D, Θ(n2)\Theta(n^2) voxels are always sufficient and sometimes necessary for any nn-vertex graph. We improve this bound to Θ(nτ)\Theta(n\cdot \tau) for graphs of treewidth τ\tau and to O((g+1)2nlog2n)O((g+1)^2n\log^2n) for graphs of genus gg. In particular, planar graphs admit representations with O(nlog2n)O(n\log^2n) voxels

    On Arrangements of Orthogonal Circles

    Full text link
    In this paper, we study arrangements of orthogonal circles, that is, arrangements of circles where every pair of circles must either be disjoint or intersect at a right angle. Using geometric arguments, we show that such arrangements have only a linear number of faces. This implies that orthogonal circle intersection graphs have only a linear number of edges. When we restrict ourselves to orthogonal unit circles, the resulting class of intersection graphs is a subclass of penny graphs (that is, contact graphs of unit circles). We show that, similarly to penny graphs, it is NP-hard to recognize orthogonal unit circle intersection graphs.Comment: Appears in the Proceedings of the 27th International Symposium on Graph Drawing and Network Visualization (GD 2019

    The history of degenerate (bipartite) extremal graph problems

    Full text link
    This paper is a survey on Extremal Graph Theory, primarily focusing on the case when one of the excluded graphs is bipartite. On one hand we give an introduction to this field and also describe many important results, methods, problems, and constructions.Comment: 97 pages, 11 figures, many problems. This is the preliminary version of our survey presented in Erdos 100. In this version 2 only a citation was complete

    On the chromatic number of random geometric graphs

    Get PDF
    Given independent random points X_1,...,X_n\in\eR^d with common probability distribution ν\nu, and a positive distance r=r(n)>0r=r(n)>0, we construct a random geometric graph GnG_n with vertex set {1,...,n}\{1,...,n\} where distinct ii and jj are adjacent when \norm{X_i-X_j}\leq r. Here \norm{.} may be any norm on \eR^d, and ν\nu may be any probability distribution on \eR^d with a bounded density function. We consider the chromatic number χ(Gn)\chi(G_n) of GnG_n and its relation to the clique number ω(Gn)\omega(G_n) as nn \to \infty. Both McDiarmid and Penrose considered the range of rr when r(lnnn)1/dr \ll (\frac{\ln n}{n})^{1/d} and the range when r(lnnn)1/dr \gg (\frac{\ln n}{n})^{1/d}, and their results showed a dramatic difference between these two cases. Here we sharpen and extend the earlier results, and in particular we consider the `phase change' range when r(tlnnn)1/dr \sim (\frac{t\ln n}{n})^{1/d} with t>0t>0 a fixed constant. Both McDiarmid and Penrose asked for the behaviour of the chromatic number in this range. We determine constants c(t)c(t) such that χ(Gn)nrdc(t)\frac{\chi(G_n)}{nr^d}\to c(t) almost surely. Further, we find a "sharp threshold" (except for less interesting choices of the norm when the unit ball tiles dd-space): there is a constant t0>0t_0>0 such that if tt0t \leq t_0 then χ(Gn)ω(Gn)\frac{\chi(G_n)}{\omega(G_n)} tends to 1 almost surely, but if t>t0t > t_0 then χ(Gn)ω(Gn)\frac{\chi(G_n)}{\omega(G_n)} tends to a limit >1>1 almost surely.Comment: 56 pages, to appear in Combinatorica. Some typos correcte
    corecore