18,702 research outputs found

    Non-linear optomechanical measurement of mechanical motion

    Get PDF
    Precision measurement of non-linear observables is an important goal in all facets of quantum optics. This allows measurement-based non-classical state preparation, which has been applied to great success in various physical systems, and provides a route for quantum information processing with otherwise linear interactions. In cavity optomechanics much progress has been made using linear interactions and measurement, but observation of non-linear mechanical degrees-of-freedom remains outstanding. Here we report the observation of displacement-squared thermal motion of a micro-mechanical resonator by exploiting the intrinsic non-linearity of the radiation pressure interaction. Using this measurement we generate bimodal mechanical states of motion with separations and feature sizes well below 100~pm. Future improvements to this approach will allow the preparation of quantum superposition states, which can be used to experimentally explore collapse models of the wavefunction and the potential for mechanical-resonator-based quantum information and metrology applications.Comment: 8 pages, 4 figures, extensive supplementary material available with published versio

    Giant enhancement of hydrodynamically enforced entropic trapping in thin channels

    Full text link
    Using our generalized Fick-Jacobs approach [Martens et al., PRL 110, 010601 (2013); Martens et al., Eur. Phys. J. Spec. Topics 222, 2453-2463 (2013)] and extensive Brownian dynamics simulations, we study particle transport through three-dimensional periodic channels of different height. Directed motion is caused by the interplay of constant bias acting along the channel axis and a pressure-driven flow. The tremendous change of the flow profile shape in channel direction with the channel height is reflected in a crucial dependence of the mean particle velocity and the effective diffusion coefficient on the channel height. In particular, we observe a giant suppression of the effective diffusivity in thin channels; four orders of magnitude compared to the bulk value.Comment: 16 pages, 8 figure

    Hydrodynamically enforced entropic trapping of Brownian particles

    Full text link
    We study the transport of Brownian particles through a corrugated channel caused by a force field containing curl-free (scalar potential) and divergence-free (vector potential) parts. We develop a generalized Fick-Jacobs approach leading to an effective one-dimensional description involving the potential of mean force. As an application, the interplay of a pressure-driven flow and an oppositely oriented constant bias is considered. We show that for certain parameters, the particle diffusion is significantly suppressed via the property of hyrodynamically enforced entropic particle trapping.Comment: 5 pages, 4 figures, in press with Physical Review Letter

    Eflornithine is Safer Than Melarsoprol for the Treatment of Second-Stage Trypanosoma Brucei Gambiense Human African Trypanosomiasis.

    Get PDF
    Patients with second-stage human African trypanosomiasis treated with eflornithine (n = 251) in 2003 in Kiri, southern Sudan, had an adjusted relative risk of death of 0.2 and experienced significantly fewer cutaneous and neurological adverse effects than did patients who were treated with melarsoprol in 2001 and 2002 (n = 708)

    Minimal realization of the Orbital Kondo effect in a Quantum Dot with two Leads

    Full text link
    We demonstrate theoretically how the Kondo effect may be observed in the transport of spinless electrons through a quantum dot. The role of conduction electron spin is played by a lead index. The Kondo effect takes place if there are two close levels in the dot populated by a single electron. For temperatures exceeding the Kondo temperature T≫TKT\gg T_K the conductance is maximal if the levels are exactly degenerate. However, at zero temperature the conductance is zero at the SU(2) symmetric point, but reaches the unitary limit G=e2/hG = e^2/h for some finite value of the level splitting \Delta\eps\sim T_K. Introducing the spin-1/2 for electrons and having two degenerate orbital levels in the dot allows to observe the SU(4) Kondo effect in a single dot coupled to two leads.Comment: 6 pages, 2 figure

    Magnetic damping of a carbon nanotube NEMS resonator

    Get PDF
    A suspended, doubly clamped single wall carbon nanotube is characterized at cryogenic temperatures. We observe specific switching effects in dc-current spectroscopy of the embedded quantum dot. These have been identified previously as nano-electromechanical self-excitation of the system, where positive feedback from single electron tunneling drives mechanical motion. A magnetic field suppresses this effect, by providing an additional damping mechanism. This is modeled by eddy current damping, and confirmed by measuring the resonance quality factor of the rf-driven nano-electromechanical resonator in an increasing magnetic field.Comment: 8 pages, 3 figure

    Liquid-induced damping of mechanical feedback effects in single electron tunneling through a suspended carbon nanotube

    Get PDF
    In single electron tunneling through clean, suspended carbon nanotube devices at low temperature, distinct switching phenomena have regularly been observed. These can be explained via strong interaction of single electron tunneling and vibrational motion of the nanotube. We present measurements on a highly stable nanotube device, subsequently recorded in the vacuum chamber of a dilution refrigerator and immersed in the 3He/4He mixture of a second dilution refrigerator. The switching phenomena are absent when the sample is kept in the viscous liquid, additionally supporting the interpretation of dc-driven vibration. Transport measurements in liquid helium can thus be used for finite bias spectroscopy where otherwise the mechanical effects would dominate the current.Comment: 4 pages, 3 figure

    Negative frequency tuning of a carbon nanotube nano-electromechanical resonator

    Get PDF
    A suspended, doubly clamped single wall carbon nanotube is characterized as driven nano-electromechanical resonator at cryogenic temperatures. Electronically, the carbon nanotube displays small bandgap behaviour with Coulomb blockade oscillations in electron conduction and transparent contacts in hole conduction. We observe the driven mechanical resonance in dc-transport, including multiple higher harmonic responses. The data shows a distinct negative frequency tuning at finite applied gate voltage, enabling us to electrostatically decrease the resonance frequency to 75% of its maximum value. This is consistently explained via electrostatic softening of the mechanical mode.Comment: 4 pages, 4 figures; submitted for the IWEPNM 2013 conference proceeding

    Chemical ordering and composition fluctuations at the (001) surface of the Fe-Ni Invar alloy

    Full text link
    We report on a study of (001) oriented fcc Fe-Ni alloy surfaces which combines first-principles calculations and low-temperature STM experiments. Density functional theory calculations show that Fe-Ni alloy surfaces are buckled with the Fe atoms slightly shifted outwards and the Ni atoms inwards. This is consistent with the observation that the atoms in the surface layer can be chemically distinguished in the STM image: brighter spots (corrugation maxima with increased apparent height) indicate iron atoms, darker ones nickel atoms. This chemical contrast reveals a c2x2 chemical order (50% Fe) with frequent Fe-rich defects on Invar alloy surface. The calculations also indicate that subsurface composition fluctuations may additionally modulate the apparent height of the surface atoms. The STM images show that this effect is pronounced compared to the surfaces of other disordered alloys, which suggests that some chemical order and corresponding concentration fluctuations exist also in the subsurface layers of Invar alloy. In addition, detailed electronic structure calculations allow us to identify the nature of a distinct peak below the Fermi level observed in the tunneling spectra. This peak corresponds to a surface resonance band which is particularly pronounced in iron-rich surface regions and provides a second type of chemical contrast with less spatial resolution but one that is essentially independent of the subsurface composition.Comment: 7 pages, 5 figure

    Raman Scattered He II λ\lambda 6545 Line in the Symbiotic Star V1016 Cygni

    Full text link
    We present a spectrum of the symbiotic star V1016 Cyg observed with the 3.6 m Canada-France-Hawaii Telescope, in order to illustrate a method to measure the covering factor of the neutral scattering region around the giant component with respect to the hot emission region around the white dwarf component. In the spectrum, we find broad wings around Hα\alpha and a broad emission feature around 6545A˚{\rm \AA} that is blended with the [N II]λ \lambda 6548 line. These two features are proposed to be formed by Raman scattering by atomic hydrogen, where the incident radiation is proposed to be UV continuum radiation around LyÎČ\beta in the former case and He II λ\lambda 1025 emission line arising from n=6→n=2n=6\to n=2 transitions for the latter feature. We remove the Hα\alpha wings by a template Raman scattering wing profile and subtract the [N II] λ\lambda 6548 line using the 3 times stronger [N II] λ\lambda 6583 feature in order to isolate the He II Raman scattered 6545 \AA line. We obtain the flux ratio F6545/F6560=0.24F_{6545}/F_{6560}=0.24 of the He II λ\lambda 6560 emission line and the 6545 \AA feature for V1016 Cyg. Under the assumption that the He II emission from this object is isotropic, this ratio is converted to the ratio Ί6545/Ί1025=0.17\Phi_{6545}/\Phi_{1025}=0.17 of the number of the incident photons and that of the scattered photons. This implies that the scattering region with H I column density NHI≄1020cm−2N_{HI}\ge 10^{20}{\rm cm^{-2}} covers 17 per cent of the emission region. By combining the presumed binary period ∌100\sim 100 yrs of this system we infer that a significant fraction of the slow stellar wind from the Mira component is ionized and that the scattering region around the Mira extends a few tens of AU, which is closely associated with the mass loss process of the Mira component.Comment: 12 pages, 6 figures, accepted for publication in Ap
    • 

    corecore