2,081 research outputs found
Warm turbulence in the Boltzmann equation
We study the single-particle distributions of three-dimensional hard sphere
gas described by the Boltzmann equation. We focus on the steady homogeneous
isotropic solutions in thermodynamically open conditions, i.e. in the presence
of forcing and dissipation. We observe nonequilibrium steady state solution
characterized by a warm turbulence, that is an energy and particle cascade
superimposed on the Maxwell-Boltzmann distribution. We use a dimensional
analysis approach to relate the thermodynamic quantities of the steady state
with the characteristics of the forcing and dissipation terms. In particular,
we present an analytical prediction for the temperature of the system which we
show to be dependent only on the forcing and dissipative scales. Numerical
simulations of the Boltzmann equation support our analytical predictions.Comment: 4 pages, 5 figure
Dynamical properties of the single--hole -- model on a 32--site square lattice
We present results of an exact diagonalization calculation of the spectral
function for a single hole described by the -- model
propagating on a 32--site square cluster. The minimum energy state is found at
a crystal momentum , consistent with
theory, and our measured dispersion relation agrees well with that determined
using the self--consistent Born approximation. In contrast to smaller cluster
studies, our spectra show no evidence of string resonances. We also make a
qualitative comparison of the variation of the spectral weight in various
regions of the first Brillouin zone with recent ARPES data.Comment: 10 pages, 5 postscript figures include
Superconductivity in the Cuprates as a Consequence of Antiferromagnetism and a Large Hole Density of States
We briefly review a theory for the cuprates that has been recently proposed
based on the movement and interaction of holes in antiferromagnetic (AF)
backgrounds. A robust peak in the hole density of states (DOS) is crucial to
produce a large critical temperature once a source of hole attraction is
identified. The predictions of this scenario are compared with experiments. The
stability of the calculations after modifying some of the original assumptions
is addressed. We find that if the dispersion is changed from an
antiferromagnetic band at half-filling to a tight binding
narrow band at , the main conclusions of the approach remain
basically the same i.e. superconductivity appears in the -channel and is enhanced by a large DOS. The main features
distinguishing these ideas from more standard theories based on
antiferromagnetic correlations are here discussed.Comment: RevTex, 7 pages, 5 figures are available on reques
Fourier analysis of wave turbulence in a thin elastic plate
The spatio-temporal dynamics of the deformation of a vibrated plate is
measured by a high speed Fourier transform profilometry technique. The
space-time Fourier spectrum is analyzed. It displays a behavior consistent with
the premises of the Weak Turbulence theory. A isotropic continuous spectrum of
waves is excited with a non linear dispersion relation slightly shifted from
the linear dispersion relation. The spectral width of the dispersion relation
is also measured. The non linearity of this system is weak as expected from the
theory. Finite size effects are discussed. Despite a qualitative agreement with
the theory, a quantitative mismatch is observed which origin may be due to the
dissipation that ultimately absorbs the energy flux of the Kolmogorov-Zakharov
casade.Comment: accepted for publication in European Physical Journal B see
http://www.epj.or
Experimental assessment of immunoreactivity indices and effectiveness of pharmacotherapy schemes in surgical models of acute pancreatitis of various severity
The investigation was aimed at assessment of immunoreactivity in the experimental groups of animals and evaluation of effectiveness of different combinations of pharmacological drugs used in the surgical models for the treatment of acute pancreatitis (AP) of various degrees of severit
OVERCOMING OF ADHESIOGENESIS
Adhesion formation in the peritoneal cavity due to surgical operating trauma may cause an infertility, abdominal pain and bowel obstruction. Nowadays the poor knowledge of the adhesion formation within abdominal cavity limits treatment methods for such patients. This review is dedicated to estimating of features of adhesion formation and implementation of methods of prevention and treatment strategy of adhesion formation during postoperative period in abdominal cavity
A Kolmogorov-Zakharov Spectrum in Gravitational Collapse
We study black hole formation during the gravitational collapse of a massless
scalar field in asymptotically spacetimes for . We conclude that
spherically symmetric gravitational collapse in asymptotically spaces is
turbulent and characterized by a Kolmogorov-Zakharov spectrum. Namely, we find
that after an initial period of weakly nonlinear evolution, there is a regime
where the power spectrum of the Ricci scalar evolves as with the
frequency, , and .Comment: 5 pages, 4 figures. v2: Typos, other initial profile considered for
universality, error analysis, close to PRL versio
Aesthetics-based classification of geological structures in outcrops for geotourism purposes: a tentative proposal
The current growth in geotourism requires an urgent development of classifications of geological features on the basis
of criteria that are relevant to tourist perceptions. It appears that structure-related patterns are especially attractive for
geotourists. Consideration of the main criteria by which tourists judge beauty and observations made in the geodiversity
hotspot of the Western Caucasus allow us to propose a tentative aesthetics-based classification of geological structures
in outcrops, with two classes and four subclasses. It is possible to distinguish between regular and quasi-regular
patterns (i.e., striped and lined and contorted patterns) and irregular and complex patterns (paysage and sculptured
patterns). Typical examples of each case are found both in the study area and on a global scale. The application of the
proposed classification permits to emphasise features of interest to a broad range of tourists. Aesthetics-based (i.e.,
non-geological) classifications are necessary to take into account visions and attitudes of visitors
Extended bound states and resonances of two fermions on a periodic lattice
The high- cuprates are possible candidates for d-wave superconductivity,
with the Cooper pair wave function belonging to a non-trivial irreducible
representation of the lattice point group. We argue that this d-wave symmetry
is related to a special form of the fermionic kinetic energy and does not
require any novel pairing mechanism. In this context, we present a detailed
study of the bound states and resonances formed by two lattice fermions
interacting via a non-retarded potential that is attractive for nearest
neighbors but repulsive for other relative positions. In the case of strong
binding, a pair formed by fermions on adjacent lattice sites can have a small
effective mass, thereby implying a high condensation temperature. For a weakly
bound state, a pair with non-trivial symmetry tends to be smaller in size than
an s-wave pair. These and other findings are discussed in connection with the
properties of high- cuprate superconductors.Comment: 21 pages, RevTeX, 4 Postscript figures, arithmetic errors corrected.
An abbreviated version (no appendix) appeared in PRB on March 1, 199
- …