10,130 research outputs found
Unstable recurrent patterns in Kuramoto-Sivashinsky dynamics
We undertake a systematic exploration of recurrent patterns in a
1-dimensional Kuramoto-Sivashinsky system. For a small, but already rather
turbulent system, the long-time dynamics takes place on a low-dimensional
invariant manifold. A set of equilibria offers a coarse geometrical partition
of this manifold. A variational method enables us to determine numerically a
large number of unstable spatiotemporally periodic solutions. The attracting
set appears surprisingly thin - its backbone are several Smale horseshoe
repellers, well approximated by intrinsic local 1-dimensional return maps, each
with an approximate symbolic dynamics. The dynamics appears decomposable into
chaotic dynamics within such local repellers, interspersed by rapid jumps
between them.Comment: 11 pages, 11 figure
Coherent control of photon transmission : slowing light in coupled resonator waveguide doped with Atoms
In this paper, we propose and study a hybrid mechanism for coherent
transmission of photons in the coupled resonator optical waveguide (CROW) by
incorporating the electromagnetically induced transparency (EIT) effect into
the controllable band gap structure of the CROW. Here, the configuration setup
of system consists of a CROW with homogeneous couplings and the artificial
atoms with -type three levels doped in each cavity. The roles of three
levels are completely considered based on a mean field approach where the
collection of three-level atoms collectively behave as two-mode spin waves. We
show that the dynamics of low excitations of atomic ensemble can be effectively
described by an coupling boson model. The exactly solutions show that the light
pulses can be stopped and stored coherently by adiabatically controlling the
classical field.Comment: 10 pages, 6 figure
A quotient of the Lubin-Tate tower II
In this article we construct the quotient M_1/P(K) of the infinite-level
Lubin-Tate space M_1 by the parabolic subgroup P(K) of GL(n,K) of block form
(n-1,1) as a perfectoid space, generalizing results of one of the authors (JL)
to arbitrary n and K/Q_p finite. For this we prove some perfectoidness results
for certain Harris-Taylor Shimura varieties at infinite level. As an
application of the quotient construction we show a vanishing theorem for
Scholze's candidate for the mod p Jacquet-Langlands and the mod p local
Langlands correspondence. An appendix by David Hansen gives a local proof of
perfectoidness of M_1/P(K) when n = 2, and shows that M_1/Q(K) is not
perfectoid for maximal parabolics Q not conjugate to P.Comment: with an appendix by David Hanse
Coupled cavity QED for coherent control of photon transmission (I): Green function approach for hybrid systems with two-level doping
This is the first one of a series of our papers theoretically studying the
coherent control of photon transmission along the coupled resonator optical
waveguide (CROW) by doping artificial atoms for various hybrid structures. We
will provide the several approaches correspondingly based on Green function,
the mean field method and spin wave theory et al. In the present paper we adopt
the two-time Green function approach to study the coherent transmission photon
in a CROW with homogeneous couplings, each cavity of which is doped by a
two-level artificial atom. We calculate the two-time correlation function for
photon in the weak-coupling case. Its poles predict the exact dispersion
relation, which results in the group velocity coherently controlled by the
collective excitation of the doping atoms. We emphasize the role of the
population inversion of doping atoms induced by some polarization mechanism.Comment: 11 pages, 9 figure
A genuine maximally seven-qubit entangled state
Contrary to A.Borras et al.'s [1] conjecture, a genuine maximally seven-qubit
entangled state is presented. We find a seven-qubit state whose marginal
density matrices for subsystems of 1,2- qubits are all completely mixed and for
subsystems of 3-qubits is almost completely mixed
Gravitational Redshift, Equivalence Principle, and Matter Waves
We review matter wave and clock comparison tests of the gravitational
redshift. To elucidate their relationship to tests of the universality of free
fall (UFF), we define scenarios wherein redshift violations are coupled to
violations of UFF ("type II"), or independent of UFF violations ("type III"),
respectively. Clock comparisons and atom interferometers are sensitive to
similar effects in type II and precisely the same effects in type III
scenarios, although type III violations remain poorly constrained. Finally, we
describe the "Geodesic Explorer," a conceptual spaceborne atom interferometer
that will test the gravitational redshift with an accuracy 5 orders of
magnitude better than current terrestrial redshift experiments for type II
scenarios and 12 orders of magnitude better for type III.Comment: Work in progress. 11 page
Comparison of Newtonian and Special-Relativistic Trajectories with the General-Relativistic Trajectory for a Low-Speed Weak-Gravity System
We show, contrary to expectation, that the trajectory predicted by general-relativistic mechanics for a low-speed weak-gravity system is not always well-approximated by the trajectories predicted by special-relativistic and Newtonian mechanics for the same parameters and initial conditions. If the system is dissipative, the breakdown of agreement occurs for chaotic trajectories only. If the system is non-dissipative, the breakdown of agreement occurs for chaotic trajectories and non-chaotic trajectories. The agreement breaks down slowly for non-chaotic trajectories but rapidly for chaotic trajectories. When the predictions are different, general-relativistic mechanics must therefore be used, instead of special-relativistic mechanics (Newtonian mechanics), to correctly study the dynamics of a weak-gravity system (a low-speed weak-gravity system)
Interactions and Scaling in a Disordered Two-Dimensional Metal
We show that a non-Fermi liquid state of interacting electrons in two
dimensions is stable in the presence of disorder and is a perfect conductor,
provided the interactions are sufficiently strong. Otherwise, the disorder
leads to localization as in the case of non-interacting electrons. This
conclusion is established by examining the replica field theory in the weak
disorder limit, but in the presence of arbitrary electron-electron interaction.
Thus, a disordered two-dimensional metal is a perfect metal, but not a Fermi
liquid.Comment: 4 pages, RevTe
Functional cartography of complex metabolic networks
High-throughput techniques are leading to an explosive growth in the size of
biological databases and creating the opportunity to revolutionize our
understanding of life and disease. Interpretation of these data remains,
however, a major scientific challenge. Here, we propose a methodology that
enables us to extract and display information contained in complex networks.
Specifically, we demonstrate that one can (i) find functional modules in
complex networks, and (ii) classify nodes into universal roles according to
their pattern of intra- and inter-module connections. The method thus yields a
``cartographic representation'' of complex networks. Metabolic networks are
among the most challenging biological networks and, arguably, the ones with
more potential for immediate applicability. We use our method to analyze the
metabolic networks of twelve organisms from three different super-kingdoms. We
find that, typically, 80% of the nodes are only connected to other nodes within
their respective modules, and that nodes with different roles are affected by
different evolutionary constraints and pressures. Remarkably, we find that
low-degree metabolites that connect different modules are more conserved than
hubs whose links are mostly within a single module.Comment: 17 pages, 4 figures. Go to http://amaral.northwestern.edu for the PDF
file of the reprin
- …