599 research outputs found

    Spin nematics and magnetization plateau transition in anisotropic Kagome magnets

    Full text link
    We study S=1 kagome antiferromagnets with isotropic Heisenberg exchange JJ and strong easy axis single-ion anisotropy DD. For DJD \gg J, the low-energy physics can be described by an effective S=1/2S=1/2 XXZXXZ model with antiferromagnetic JzJJ_z \sim J and ferromagnetic JJ2/DJ_\perp \sim J^2/D. Exploiting this connection, we argue that non-trivial ordering into a "spin-nematic" occurs whenever DD dominates over JJ, and discuss its experimental signatures. We also study a magnetic field induced transition to a magnetization plateau state at magnetization 1/3 which breaks lattice translation symmetry due to ordering of the SzS^z and occupies a lobe in the B/JzB/J_z-Jz/JJ_z/J_\perp phase diagram.Comment: 4pages, two-column format, three .eps figure

    Symmetry breaking perturbations and strange attractors

    Full text link
    The asymmetrically forced, damped Duffing oscillator is introduced as a prototype model for analyzing the homoclinic tangle of symmetric dissipative systems with \textit{symmetry breaking} disturbances. Even a slight fixed asymmetry in the perturbation may cause a substantial change in the asymptotic behavior of the system, e.g. transitions from two sided to one sided strange attractors as the other parameters are varied. Moreover, slight asymmetries may cause substantial asymmetries in the relative size of the basins of attraction of the unforced nearly symmetric attracting regions. These changes seems to be associated with homoclinic bifurcations. Numerical evidence indicates that \textit{strange attractors} appear near curves corresponding to specific secondary homoclinic bifurcations. These curves are found using analytical perturbational tools

    Universal behaviour of entrainment due to coherent structures in turbulent shear flow

    Full text link
    I suggest a solution to a persistent mystery in the physics of turbulent shear flows: cumulus clouds rise to towering heights, practically without entraining the ambient medium, while apparently similar turbulent jets in general lose their identity within a small distance through entrainment and mixing. From dynamical systems computations on a model chaotic vortical flow, I show that entrainment and mixing due to coherent structures depend sensitively on the relative speeds of different portions of the flow. A small change in these speeds, effected for example by heating, drastically alters the sizes of the KAM tori and the chaotic mixing region. The entrainment rate and, hence, the lifetime of a turbulent shear flow, shows a universal, non-monotone dependence on the heating.Comment: Preprint replaced in order to add the following comment: accepted for publication in Phys. Rev. Let

    Multicritical crossovers near the dilute Bose gas quantum critical point

    Full text link
    Many zero temperature transitions, involving the deviation in the value of a U(1)U(1) conserved charge from a quantized value, are described by the dilute Bose gas quantum critical point. On such transitions, we study the consequences of perturbations which break the symmetry down to ZNZ_N in dd spatial dimensions. For the case d=1d=1, N=2N=2, we obtain exact, finite temperature, multicritical crossover functions by a mapping to an integrable lattice model.Comment: 10 pages, REVTEX 3.0, 2 EPS figure

    Approximating multi-dimensional Hamiltonian flows by billiards

    Full text link
    Consider a family of smooth potentials VϵV_{\epsilon}, which, in the limit ϵ0\epsilon\to0, become a singular hard-wall potential of a multi-dimensional billiard. We define auxiliary billiard domains that asymptote, as ϵ0\epsilon\to0 to the original billiard, and provide asymptotic expansion of the smooth Hamiltonian solution in terms of these billiard approximations. The asymptotic expansion includes error estimates in the CrC^{r} norm and an iteration scheme for improving this approximation. Applying this theory to smooth potentials which limit to the multi-dimensional close to ellipsoidal billiards, we predict when the separatrix splitting persists for various types of potentials
    corecore