599 research outputs found
Spin nematics and magnetization plateau transition in anisotropic Kagome magnets
We study S=1 kagome antiferromagnets with isotropic Heisenberg exchange
and strong easy axis single-ion anisotropy . For , the low-energy
physics can be described by an effective model with
antiferromagnetic and ferromagnetic .
Exploiting this connection, we argue that non-trivial ordering into a
"spin-nematic" occurs whenever dominates over , and discuss its
experimental signatures. We also study a magnetic field induced transition to a
magnetization plateau state at magnetization 1/3 which breaks lattice
translation symmetry due to ordering of the and occupies a lobe in the
- phase diagram.Comment: 4pages, two-column format, three .eps figure
Symmetry breaking perturbations and strange attractors
The asymmetrically forced, damped Duffing oscillator is introduced as a
prototype model for analyzing the homoclinic tangle of symmetric dissipative
systems with \textit{symmetry breaking} disturbances. Even a slight fixed
asymmetry in the perturbation may cause a substantial change in the asymptotic
behavior of the system, e.g. transitions from two sided to one sided strange
attractors as the other parameters are varied. Moreover, slight asymmetries may
cause substantial asymmetries in the relative size of the basins of attraction
of the unforced nearly symmetric attracting regions. These changes seems to be
associated with homoclinic bifurcations. Numerical evidence indicates that
\textit{strange attractors} appear near curves corresponding to specific
secondary homoclinic bifurcations. These curves are found using analytical
perturbational tools
Universal behaviour of entrainment due to coherent structures in turbulent shear flow
I suggest a solution to a persistent mystery in the physics of turbulent
shear flows: cumulus clouds rise to towering heights, practically without
entraining the ambient medium, while apparently similar turbulent jets in
general lose their identity within a small distance through entrainment and
mixing. From dynamical systems computations on a model chaotic vortical flow, I
show that entrainment and mixing due to coherent structures depend sensitively
on the relative speeds of different portions of the flow. A small change in
these speeds, effected for example by heating, drastically alters the sizes of
the KAM tori and the chaotic mixing region. The entrainment rate and, hence,
the lifetime of a turbulent shear flow, shows a universal, non-monotone
dependence on the heating.Comment: Preprint replaced in order to add the following comment: accepted for
publication in Phys. Rev. Let
Multicritical crossovers near the dilute Bose gas quantum critical point
Many zero temperature transitions, involving the deviation in the value of a
conserved charge from a quantized value, are described by the dilute
Bose gas quantum critical point. On such transitions, we study the consequences
of perturbations which break the symmetry down to in spatial
dimensions. For the case , , we obtain exact, finite temperature,
multicritical crossover functions by a mapping to an integrable lattice model.Comment: 10 pages, REVTEX 3.0, 2 EPS figure
Approximating multi-dimensional Hamiltonian flows by billiards
Consider a family of smooth potentials , which, in the limit
, become a singular hard-wall potential of a multi-dimensional
billiard. We define auxiliary billiard domains that asymptote, as
to the original billiard, and provide asymptotic expansion of
the smooth Hamiltonian solution in terms of these billiard approximations. The
asymptotic expansion includes error estimates in the norm and an
iteration scheme for improving this approximation. Applying this theory to
smooth potentials which limit to the multi-dimensional close to ellipsoidal
billiards, we predict when the separatrix splitting persists for various types
of potentials
- …