2,491 research outputs found

    Energy storage and retrieval: the secondary battery route

    Get PDF
    Harnessing sunlight for the production of electrical energy is an engrossing prospect. The crucial concept underlying the success of solar power stations is energy storage and its retrieval on demand which can be most effectively achieved with storage batteries. This article highlights the chemistry of existing and emerging battery technologies

    The lead discrepancy in intrinsically s-process enriched post-AGB stars in the Magellanic Clouds

    Full text link
    Context: Our understanding of the s-process nucleosynthesis in asymptotic giant branch (AGB) stars is incomplete. AGB models predict, for example, large overabundances of lead (Pb) compared to other s-process elements in metal-poor low-mass AGB stars. This is indeed observed in some extrinsically enhanced metal-poor stars, but not in all. An extensive study of intrinsically s-process enriched objects is essential for improving our knowledge of the AGB third dredge-up and associated s-process nucleosynthesis. Aims: We compare the spectral abundance analysis of the SMC post-AGB star J004441.04-732136.4 with state-of-the-art AGB model predictions with a main focus on Pb. The low S/N in the Pb line region made the result of our previous study inconclusive. We acquired additional data covering the region of the strongest Pb line. Methods: By carefully complementing re-reduced previous data, with newly acquired UVES optical spectra, we improve the S/N of the spectrum around the strongest Pb line. Therefore, an upper limit for the Pb abundance is estimated from a merged weighted mean spectrum using synthetic spectral modeling. We then compare the abundance results from the combined spectra to predictions of tailored AGB evolutionary models from two independent evolution codes. In addition, we determine upper limits for Pb abundances for three previously studied LMC post-AGB objects. Results: Although theoretical predictions for J004441.04-732136.4 match the s-process distribution up to tungsten (W), the predicted very high Pb abundance is clearly not detected. The three additional LMC post-AGB stars show a similar lack of a very high Pb abundance. Conclusion: From our study, we conclude that none of these low-mass, low-metallicity post-AGB stars of the LMC and SMC are strong Pb producers. This conflicts with current theoretical predictions.Comment: 4 pages, 3 figure

    Uncertainties in stellar evolution models: convective overshoot

    Full text link
    In spite of the great effort made in the last decades to improve our understanding of stellar evolution, significant uncertainties remain due to our poor knowledge of some complex physical processes that require an empirical calibration, such as the efficiency of the interior mixing related to convective overshoot. Here we review the impact of convective overshoot on the evolution of stars during the main Hydrogen and Helium burning phases.Comment: Proc. of the workshop "Asteroseismology of stellar populations in the Milky Way" (Sesto, 22-26 July 2013), Astrophysics and Space Science Proceedings, (eds. A. Miglio, L. Girardi, P. Eggenberger, J. Montalban

    Observation of direct and indirect magnetoelectricity in lead free ferroelectric (Na 0.5Bi 0.5TiO 3)-magnetostrictive (CoFe 2O 4) particulate composite

    Get PDF
    A particulate composite consisting of 65 mol. % Na 0.5Bi 0.5TiO 3 and 35 mol. % CoFe 2O 4 was synthesized, and it's structure, microstructure, ferroelectric, magnetostrictive, magnetic, and direct/indirect magnetoelectric properties were studied. The composite showed different magnetization behaviour under electrically poled and un-poled conditions. The percentage change in magnetization as a result of poling is approximately -15% at 500 Oe magnetic field. Magnetostriction measurements displayed a value of λ 11 = -57 × 10 -6 and piezomagnetic coefficient δλ 11/δH = 0.022 × 10 -6 kOe -1 at 2.2 kOe for the composite. The maximum magnetoelectric output varied from 1350 mV/cm to 2000 mV/cm with change in the electrical poling condition

    Theory of Light Emission in Sonoluminescence as Thermal Radiation

    Full text link
    Based on the model proposed by Hilgenfeldt {\it at al.} [Nature {\bf 398}, 401 (1999)], we present here a comprehensive theory of thermal radiation in single-bubble sonoluminescence (SBSL). We first invoke the generalized Kirchhoff's law to obtain the thermal emissivity from the absorption cross-section of a multilayered sphere (MLS). A sonoluminescing bubble, whose internal structure is determined from hydrodynamic simulations, is then modelled as a MLS and in turn the thermal radiation is evaluated. Numerical results obtained from simulations for argon bubbles show that our theory successfully captures the major features observed in SBSL experiments.Comment: 17 pages, 20 figure
    corecore