358 research outputs found
Existence and homogenization of the Rayleigh-B\'enard problem
The Navier-Stokes equation driven by heat conduction is studied. As a
prototype we consider Rayleigh-B\'enard convection, in the Boussinesq
approximation. Under a large aspect ratio assumption, which is the case in
Rayleigh-B\'enard experiments with Prandtl number close to one, we prove the
existence of a global strong solution to the 3D Navier-Stokes equation coupled
with a heat equation, and the existence of a maximal B-attractor. A rigorous
two-scale limit is obtained by homogenization theory. The mean velocity field
is obtained by averaging the two-scale limit over the unit torus in the local
variable
Comment: Superconducting transition in Nb nanowires fabricated using focused ion beam
In a recent paper Tettamanzi et al (2009 Nanotechnology \bf{20} 465302)
describe the fabrication of superconducting Nb nanowires using a focused ion
beam. They interpret their conductivity data in the framework of thermal and
quantum phase slips below . In the following we will argue that their
analysis is inappropriate and incomplete, leading to contradictory results.
Instead, we propose an interpretation of the data within a SN proximity model.Comment: 3 pages, 1 figure accepted in Nanotechnolog
Some generic aspects of bosonic excitations in disordered systems
We consider non-interacting bosonic excitations in disordered systems,
emphasising generic features of quadratic Hamiltonians in the absence of
Goldstone modes. We discuss relationships between such Hamiltonians and the
symmetry classes established for fermionic systems. We examine the density
\rho(\omega) of excitation frequencies \omega, showing how the universal
behavior \rho(\omega) ~ \omega^4 for small \omega can be obtained both from
general arguments and by detailed calculations for one-dimensional models
Generation of small-scale structures in the developed turbulence
The Navier-Stokes equation for incompressible liquid is considered in the
limit of infinitely large Reynolds number. It is assumed that the flow
instability leads to generation of steady-state large-scale pulsations. The
excitation and evolution of the small-scale turbulence is investigated. It is
shown that the developed small-scale pulsations are intermittent. The maximal
amplitude of the vorticity fluctuations is reached along the vortex filaments.
Basing on the obtained solution, the pair correlation function in the limit
is calculated. It is shown that the function obeys the Kolmogorov law
.Comment: 18 page
Hard loss of stability in Painlev\'e-2 equation
A special asymptotic solution of the Painlev\'e-2 equation with small
parameter is studied. This solution has a critical point corresponding to
a bifurcation phenomenon. When the constructed solution varies slowly
and when the solution oscillates very fast. We investigate the
transitional layer in detail and obtain a smooth asymptotic solution, using a
sequence of scaling and matching procedures
COMBINED FEMORAL FIXATION TECNIQUE IN HAMSTRING TENDON ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION: ASESSMENT OF TUNNEL WIDENING
Purpose – to assess the influence of combined femoral fixation technique during arthroscopic ACL reconstruction on the femoral tunnel widening at long term follow-up.Material and methods. 99 patients with primary hamstring tendon (HT) ACL reconstruction performed in 2007-2008 were analyzed. In the study group (42 patients) on the femoral side a combined cortical suspension (Endobutton CL, Smith & Nephew) and transverse (Rigid Fix, Depuy Mitek) fixation of graft was used. In control group, isolated cortical suspension fixation (Endobutton CL, Smith & Nephew) was used. On the tibial side for graft fixation a biodegradable screw (Biointrafix, DePuy Mitek) was used in all cases. Tunnel widening was calculated in percentage against primary tunnel diameter created during the surgery. MRI data were exported to eFilm (Merge Healthcare software), measurement of femoral tunnel diameters was performed on T1 sequences in coronal and sagittal planes on three different levels.Results. The mean age at the last follow up in the study group was 38.9±1.4, in control group – 38,6±1,08. The median time from surgery to follow up was 9 years and 4 months in the study group and 8 years 7 months in the controls. The incidence of graft failure in the study group was reported as 14.3%, while in the control group as 17,5%. The median femoral tunnel widening was larger in the control group at the joint aperture and midsection levels both in coronal and sagittal plane, although there was no statistically significant differences (p>0,05).Conclusion. The combination of cortical suspension and transverse HT femoral graft fixation technique is likely to reduce tunnel enlargement at the long term follow-up. However further research and larger sample groups are required
Low-temperature specific heat and thermal conductivity of glycerol
We have measured the thermal conductivity of glassy glycerol between 1.5 K
and 100 K, as well as the specific heat of both glassy and crystalline phases
of glycerol between 0.5 K and 25 K. We discuss both low-temperature properties
of this typical molecular glass in terms of the soft-potential model. Our
finding of an excellent agreement between its predictions and experimental data
for these two independent measurements constitutes a robust proof of the
capabilities of the soft-potential model to account for the low-temperature
properties of glasses in a wide temperature range.Comment: 4 pages, 3 figures. To be published in Phys. Rev. B (2002
Interaction of quasilocal harmonic modes and boson peak in glasses
The direct proportionality relation between the boson peak maximum in
glasses, , and the Ioffe-Regel crossover frequency for phonons,
, is established. For several investigated materials . At the frequency the mean free path of the
phonons becomes equal to their wavelength because of strong resonant
scattering on quasilocal harmonic oscillators. Above this frequency phonons
cease to exist. We prove that the established correlation between
and holds in the general case and is a direct consequence of
bilinear coupling of quasilocal oscillators with the strain field.Comment: RevTex, 4 pages, 1 figur
Voronoi-Delaunay analysis of normal modes in a simple model glass
We combine a conventional harmonic analysis of vibrations in a one-atomic
model glass of soft spheres with a Voronoi-Delaunay geometrical analysis of the
structure. ``Structure potentials'' (tetragonality, sphericity or perfectness)
are introduced to describe the shape of the local atomic configurations
(Delaunay simplices) as function of the atomic coordinates. Apart from the
highest and lowest frequencies the amplitude weighted ``structure potential''
varies only little with frequency. The movement of atoms in soft modes causes
transitions between different ``perfect'' realizations of local structure. As
for the potential energy a dynamic matrix can be defined for the ``structure
potential''. Its expectation value with respect to the vibrational modes
increases nearly linearly with frequency and shows a clear indication of the
boson peak. The structure eigenvectors of this dynamical matrix are strongly
correlated to the vibrational ones. Four subgroups of modes can be
distinguished
- …