112 research outputs found
Relativistic Quantum Games in Noninertial Frames
We study the influence of Unruh effect on quantum non-zero sum games. In
particular, we investigate the quantum Prisoners' Dilemma both for entangled
and unentangled initial states and show that the acceleration of the
noninertial frames disturbs the symmetry of the game. It is shown that for
maximally entangled initial state, the classical strategy C (cooperation)
becomes the dominant strategy. Our investigation shows that any quantum
strategy does no better for any player against the classical strategies. The
miracle move of Eisert et al (1999 Phys. Rev. Lett. 83 3077) is no more a
superior move. We show that the dilemma like situation is resolved in favor of
one player or the other.Comment: 8 Pages, 2 figures, 2 table
Noisy quantum Monty Hall game
The influence of spontaneous emission channel and generalized Pauli channel
on quantum Monty Hall Game is analysed. The scheme of Flittney and Abbott is
reformulated using the formalism of density matrices. Optimal classical
strategies for given quantum strategies are found. The whole presented scheme
illustrates how quantum noise may change the odds of a zero-sum game.Comment: 10 pages, 3 figure
Finding the Origin of the Pioneer Anomaly
Analysis of radio-metric tracking data from the Pioneer 10/11 spacecraft at
distances between 20 - 70 astronomical units (AU) from the Sun has consistently
indicated the presence of an anomalous, small, constant Doppler frequency
drift. The drift can be interpreted as being due to a constant acceleration of
a_P= (8.74 \pm 1.33) x 10^{-8} cm/s^2 directed towards the Sun. Although it is
suspected that there is a systematic origin to the effect, none has been found.
As a result, the nature of this anomaly has become of growing interest. Here we
present a concept for a deep-space experiment that will reveal the origin of
the discovered anomaly and also will characterize its properties to an accuracy
of at least two orders of magnitude below the anomaly's size. The proposed
mission will not only provide a significant accuracy improvement in the search
for small anomalous accelerations, it will also determine if the anomaly is due
to some internal systematic or has an external origin. A number of critical
requirements and design considerations for the mission are outlined and
addressed. If only already existing technologies were used, the mission could
be flown as early as 2010.Comment: 21 SS pages, 4+1 figures. final changes for publicatio
Simulation of continuous variable quantum games without entanglement
A simulation scheme of quantum version of Cournot's Duopoly is proposed, in
which there is a new Nash equilibrium that may be also Pareto optimal without
any entanglement involved. The unique property of this simulation scheme is
decoherence-free against the symmetric photon loss. Furthermore, we analyze the
effects of the asymmetric information on this simulation scheme and investigate
the case of asymmetric game caused by asymmetric photon loss. A second-order
phase transition-like behavior of the average profits of the firm 1 and firm 2
in Nash equilibrium can be observed with the change of the degree of asymmetry
of the information or the degree of "virtual cooperation". It is also found
that asymmetric photon loss in this simulation scheme plays a similar role with
the asymmetric entangled states in the quantum game.
PACS numbers: 02.50.Le, 03.67.-aComment: 7 pages, 4 figures, RevTex, some contents have been revise
Quantum Games with Correlated Noise
We analyze quantum game with correlated noise through generalized
quantization scheme. Four different combinations on the basis of entanglement
of initial quantum state and the measurement basis are analyzed. It is shown
that the advantage that a quantum player can get by exploiting quantum
strategies is only valid when both the initial quantum state and the
measurement basis are in entangled form. Furthermore, it is shown that for
maximum correlation the effects of decoherence diminish and it behaves as a
noiseless game.Comment: 12 page
Quantum Matching Pennies Game
A quantum version of the Matching Pennies (MP) game is proposed that is
played using an Einstein-Podolsky-Rosen-Bohm (EPR-Bohm) setting. We construct
the quantum game without using the state vectors, while considering only the
quantum mechanical joint probabilities relevant to the EPR-Bohm setting. We
embed the classical game within the quantum game such that the classical MP
game results when the quantum mechanical joint probabilities become
factorizable. We report new Nash equilibria in the quantum MP game that emerge
when the quantum mechanical joint probabilities maximally violate the
Clauser-Horne-Shimony-Holt form of Bell's inequality.Comment: Revised in light of referees' comments, submitted to Journal of the
Physical Society of Japan, 14 pages, 1 figur
The effect of quantum memory on quantum games
We study quantum games with correlated noise through a generalized
quantization scheme. We investigate the effects of memory on quantum games,
such as Prisoner's Dilemma, Battle of the Sexes and Chicken, through three
prototype quantum-correlated channels. It is shown that the quantum player
enjoys an advantage over the classical player for all nine cases considered in
this paper for the maximally entangled case. However, the quantum player can
also outperform the classical player for subsequent cases that can be noted in
the case of the Battle of the Sexes game. It can be seen that the Nash
equilibria do not change for all the three games under the effect of memory.Comment: 26 pages, 7 ps figure
Analysis of two-player quantum games in an EPR setting using geometric algebra
The framework for playing quantum games in an Einstein-Podolsky-Rosen (EPR)
type setting is investigated using the mathematical formalism of Clifford
geometric algebra (GA). In this setting, the players' strategy sets remain
identical to the ones in the classical mixed-strategy version of the game,
which is then obtained as proper subset of the corresponding quantum game. As
examples, using GA we analyze the games of Prisoners' Dilemma and Stag Hunt
when played in the EPR type setting.Comment: 20 pages, no figure, revise
- …