349 research outputs found
Critical points and resonance of hyperplane arrangements
If F is a master function corresponding to a hyperplane arrangement A and a
collection of weights y, we investigate the relationship between the critical
set of F, the variety defined by the vanishing of the one-form w = d log F, and
the resonance of y. For arrangements satisfying certain conditions, we show
that if y is resonant in dimension p, then the critical set of F has
codimension at most p. These include all free arrangements and all rank 3
arrangements.Comment: revised version, Canadian Journal of Mathematics, to appea
Nonresonance conditions for arrangements
We prove a vanishing theorem for the cohomology of the complement of a
complex hyperplane arrangement with coefficients in a complex local system.
This result is compared with other vanishing theorems, and used to study Milnor
fibers of line arrangements, and hypersurface arrangements.Comment: LaTeX, 10 page
Pressure seal Patent
Pressure seals suitable for use in environmental test chamber
On the fundamental group of the complement of a complex hyperplane arrangement
We construct two combinatorially equivalent line arrangements in the complex
projective plane such that the fundamental groups of their complements are not
isomorphic. The proof uses a new invariant of the fundamental group of the
complement to a line arrangement of a given combinatorial type with respect to
isomorphisms inducing the canonical isomorphism of the first homology groups.Comment: 12 pages, Latex2e with AMSLaTeX 1.2, no figures; this last version is
almost the same as published in Functional Analysis and its Applications 45:2
(2011), 137-14
Exact Insulating and Conducting Ground States of a Periodic Anderson Model in Three Dimensions
We present a class of exact ground states of a three-dimensional periodic
Anderson model at 3/4 filling. Hopping and hybridization of d and f electrons
extend over the unit cell of a general Bravais lattice. Employing novel
composite operators combined with 55 matching conditions the Hamiltonian is
cast into positive semidefinite form. A product wave function in position space
allows one to identify stability regions of an insulating and a conducting
ground state. The metallic phase is a non-Fermi liquid with one dispersing and
one flat band.Comment: 4 pages, 3 figure
Some analogs of Zariski's Theorem on nodal line arrangements
For line arrangements in P^2 with nice combinatorics (in particular, for
those which are nodal away the line at infinity), we prove that the
combinatorics contains the same information as the fundamental group together
with the meridianal basis of the abelianization. We consider higher dimensional
analogs of the above situation. For these analogs, we give purely combinatorial
complete descriptions of the following topological invariants (over an
arbitrary field): the twisted homology of the complement, with arbitrary rank
one coefficients; the homology of the associated Milnor fiber and Alexander
cover, including monodromy actions; the coinvariants of the first higher
non-trivial homotopy group of the Alexander cover, with the induced monodromy
action.Comment: Published by Algebraic and Geometric Topology at
http://www.maths.warwick.ac.uk/agt/AGTVol5/agt-5-28.abs.htm
Plaquette operators used in the rigorous study of ground-states of the Periodic Anderson Model in dimensions
The derivation procedure of exact ground-states for the periodic Anderson
model (PAM) in restricted regions of the parameter space and D=2 dimensions
using plaquette operators is presented in detail. Using this procedure, we are
reporting for the first time exact ground-states for PAM in 2D and finite value
of the interaction, whose presence do not require the next to nearest neighbor
extension terms in the Hamiltonian. In order to do this, a completely new type
of plaquette operator is introduced for PAM, based on which a new localized
phase is deduced whose physical properties are analyzed in detail. The obtained
results provide exact theoretical data which can be used for the understanding
of system properties leading to metal-insulator transitions, strongly debated
in recent publications in the frame of PAM. In the described case, the lost of
the localization character is connected to the break-down of the long-range
density-density correlations rather than Kondo physics.Comment: 34 pages, 5 figure
Torus invariant divisors
Using the language of polyhedral divisors and divisorial fans we describe
invariant divisors on normal varieties X which admit an effective codimension
one torus action. In this picture X is given by a divisorial fan on a smooth
projective curve Y. Cartier divisors on X can be described by piecewise affine
functions h on the divisorial fan S whereas Weil divisors correspond to certain
zero and one dimensional faces of it. Furthermore we provide descriptions of
the divisor class group and the canonical divisor. Global sections of line
bundles O(D_h) will be determined by a subset of a weight polytope associated
to h, and global sections of specific line bundles on the underlying curve Y.Comment: 16 pages; 5 pictures; small changes in the layout, further typos
remove
Exotic torus manifolds and equivariant smooth structures on quasitoric manifolds
In 2006 Masuda and Suh asked if two compact non-singular toric varieties
having isomorphic cohomology rings are homeomorphic. In the first part of this
paper we discuss this question for topological generalizations of toric
varieties, so-called torus manifolds. For example we show that there are
homotopy equivalent torus manifolds which are not homeomorphic. Moreover, we
characterize those groups which appear as the fundamental groups of locally
standard torus manifolds.
In the second part we give a classification of quasitoric manifolds and
certain six-dimensional torus manifolds up to equivariant diffeomorphism.
In the third part we enumerate the number of conjugacy classes of tori in the
diffeomorphism group of torus manifolds. For torus manifolds of dimension
greater than six there are always infinitely many conjugacy classes. We give
examples which show that this does not hold for six-dimensional torus
manifolds.Comment: 21 pages, 2 figures, results about quasitoric manifolds adde
- …