2,566 research outputs found

    Timing of the emergence of new successful viral strains in seasonal influenza

    Get PDF
    High evolvability of influenza virus and the complex nature of its antagonistic interaction with the host immune system make it difficult to predict which strain of virus will become epidemic next and when it will emerge. To investigate the most likely time at which a new successful strain emerges every year in seasonal influenza, we use an individual-based model that takes into account the seasonality in transmission rate and host cross-immunity against a current viral strain due to previous infections with other strains. Our model deals with antigenic evolution of influenza virus that originated by point mutations at the antigen determining sites and is driven by host immune response. Under the range of parameters by which influenza virus shows a .trunk. shape in its phylogenetic tree, as is typical in influenza A virus evolution, we find that most successful mutant strains emerge in an early part of the epidemic season, and that the time when the number of infected hosts reaches a maximum tends to be more than one season after viral emergence. This carryover of the epidemic peak timing implies that we can detect the strain that will become dominant in the epidemic in the following year

    Timing of the emergence of new successful viral strains in seasonal influenza

    Get PDF
    High evolvability of influenza virus and the complex nature of its antagonistic interaction with the host immune system make it difficult to predict which strain of virus will become epidemic next and when it will emerge. To investigate the most likely time at which a new successful strain emerges every year in seasonal influenza, we use an individual-based model that takes into account the seasonality in transmission rate and host cross-immunity against a current viral strain due to previous infections with other strains. Our model deals with antigenic evolution of influenza virus that originated by point mutations at the antigen determining sites and is driven by host immune response. Under the range of parameters by which influenza virus shows a .trunk. shape in its phylogenetic tree, as is typical in influenza A virus evolution, we find that most successful mutant strains emerge in an early part of the epidemic season, and that the time when the number of infected hosts reaches a maximum tends to be more than one season after viral emergence. This carryover of the epidemic peak timing implies that we can detect the strain that will become dominant in the epidemic in the following year

    Dark Energy Survey Year 1 Results: Tomographic cross-correlations between Dark Energy Survey galaxies and CMB lensing from South Pole Telescope + Planck

    Get PDF
    We measure the cross-correlation between REDMAGIC galaxies selected from the Dark Energy Survey (DES) year 1 data and gravitational lensing of the cosmic microwave background (CMB) reconstructed from South Pole Telescope (SPT) and Planck data over 1289  deg^2. When combining measurements across multiple galaxy redshift bins spanning the redshift range of 0.15 < z < 0.90, we reject the hypothesis of no correlation at 19.9σ significance. When removing small-scale data points where thermal Sunyaev-Zel’dovich signal and nonlinear galaxy bias could potentially bias our results, the detection significance is reduced to 9.9σ. We perform a joint analysis of galaxy-CMB lensing cross-correlations and galaxy clustering to constrain cosmology, finding Ω_m = 0.276^(+0.029)_(−0.030_ and S_8 = σ_8√Ω_m/0.3 = 0.800^(+0.090)_(−0.094). We also perform two alternate analyses aimed at constraining only the growth rate of cosmic structure as a function of redshift, finding consistency with predictions from the concordance ΛCDM model. The measurements presented here are part of a joint cosmological analysis that combines galaxy clustering, galaxy lensing and CMB lensing using data from DES, SPT and Planck

    Dark Energy Survey Year 1 Results: Cross-correlation between Dark Energy Survey Y1 galaxy weak lensing and South Pole Telescope+Planck CMB weak lensing

    Get PDF
    We cross-correlate galaxy weak lensing measurements from the Dark Energy Survey (DES) year-one data with a cosmic microwave background (CMB) weak lensing map derived from South Pole Telescope (SPT) and Planck data, with an effective overlapping area of 1289  deg^2. With the combined measurements from four source galaxy redshift bins, we obtain a detection significance of 5.8σ. We fit the amplitude of the correlation functions while fixing the cosmological parameters to a fiducial ΛCDMmodel, finding A=0.99±0.17. We additionally use the correlation function measurements to constrain shear calibration bias, obtaining constraints that are consistent with previous DES analyses. Finally, when performing a cosmological analysis under the ΛCDM model, we obtain the marginalized constraints of Ω_m=0.261^(+0.070)_(−0.051) and S_8≡σ_8√Ω_m/0.3=0.660^(+0.085)_(−0.100). These measurements are used in a companion work that presents cosmological constraints from the joint analysis of two-point functions among galaxies, galaxy shears, and CMB lensing using DES, SPT, and Planck data

    A 2500 deg^2 CMB Lensing Map from Combined South Pole Telescope and Planck Data

    Get PDF
    We present a cosmic microwave background (CMB) lensing map produced from a linear combination of South Pole Telescope (SPT) and Planck temperature data. The 150 GHz temperature data from the 2500 deg^2 SPT-SZ survey is combined with the Planck 143 GHz data in harmonic space to obtain a temperature map that has a broader ℓ coverage and less noise than either individual map. Using a quadratic estimator technique on this combined temperature map, we produce a map of the gravitational lensing potential projected along the line of sight. We measure the auto-spectrum of the lensing potential C^(φ φ)_L, and compare it to the theoretical prediction for a ΛCDM cosmology consistent with the Planck 2015 data set, finding a best-fit amplitude of 0.95^(+0.06)_(-0.06)(stat.)^(+0.01)_(-0.01)(sys). The null hypothesis of no lensing is rejected at a significance of 24σ. One important use of such a lensing potential map is in cross-correlations with other dark matter tracers. We demonstrate this cross-correlation in practice by calculating the cross-spectrum, C^(φG)_L, between the SPT+Planck lensing map and Wide-field Infrared Survey Explorer (WISE) galaxies. We fit C^(φG)_L to a power law of the form p_L = s(L/L_0)^(-b) with a, L_0, and b fixed, and find η^( φG) = C^( φG)_L/P_L = 0.94^(+0.04)_(-0.04), which is marginally lower, but in good agreement with η^( φG) = 1.00^(+0.02)_(-0.01), the best-fit amplitude for the cross-correlation of Planck-2015 CMB lensing and WISEgalaxies over ~67% of the sky. The lensing potential map presented here will be used for cross-correlation studies with the Dark Energy Survey, whose footprint nearly completely covers the SPT 2500 deg^2 field

    Ab initio derivation of multi-orbital extended Hubbard model for molecular crystals

    Full text link
    From configuration interaction (CI) ab initio calculations, we derive an effective two-orbital extended Hubbard model based on the gerade (g) and ungerade (u) molecular orbitals (MOs) of the charge-transfer molecular conductor (TTM-TTP)I_3 and the single-component molecular conductor [Au(tmdt)_2]. First, by focusing on the isolated molecule, we determine the parameters for the model Hamiltonian so as to reproduce the CI Hamiltonian matrix. Next, we extend the analysis to two neighboring molecule pairs in the crystal and we perform similar calculations to evaluate the inter-molecular interactions. From the resulting tight-binding parameters, we analyze the band structure to confirm that two bands overlap and mix in together, supporting the multi-band feature. Furthermore, using a fragment decomposition, we derive the effective model based on the fragment MOs and show that the staking TTM-TTP molecules can be described by the zig-zag two-leg ladder with the inter-molecular transfer integral being larger than the intra-fragment transfer integral within the molecule. The inter-site interactions between the fragments follow a Coulomb law, supporting the fragment decomposition strategy.Comment: 16 pages, 8 figures, published versio
    • …
    corecore