545 research outputs found

    Agricultural adaptation to climate policies under technical change

    Get PDF
    This study uses a partial equilibrium model of the US agricultural sector to examine how technical progress and carbon price levels affect land management adaptation. We find that the climate policy range, over which a more extensive agriculture is preferred, decreases as crop yields increase. Second, technical progress with traditional crops offers less mitigation benefits than progress with mitigation options themselves. Third, while agricultural producers benefit from technical progress on energy crops, they fare worse if technical progress improves traditional crops and low carbon prices.Technical Change, Producer Adaptation, Agricultural Sector Model, Carbon Sequestration, Mathematical Programming, Climate Policy Simulation

    Will GEO work? -- An economist view

    Get PDF
    In this paper we use a game-theoretical approach to model a global partnership in building global earth observation system. Our analysis of possible equilibrium solutions shows that only in the case of similar economies we will observe cooperation behavior (when all invest into global system) and otherwise we will observe free-riding. However uncertainty in environmental risks valuing can provide a strong incentive for free-riders to cooperate

    Discount options as a financial instrument supporting REDD +

    Get PDF

    REDD-based Offsets: Benefit Sharing and Risks

    Get PDF
    In this study we apply systems analysis methods to modeling financial instruments supporting the Reduced Emissions from Deforestation and Degradation (REDD) program. We consider a risk-aware forest owner and an electricity producer evaluating the REDD-based offsets with benefit-sharing mechanism under uncertain CO2 prices. For a range of CO2 prices and respective risks perceived by the forest owner (seller) and electricity producer (buyer), we apply a model of fair (indifference) pricing. The decision-making process under uncertainty is formalized in the spirit of Howard Raiffa’s “Decision analysis” (1968). Parties’ risk preferences are reflected by exponential utility functions. The potentially contracted amounts of REDD offsets are analyzed under various risk preferences and for different benefit sharing opportunities and price levels. Our results show that a risk-averse attitude considerably increases the contracted amounts of REDD offsets (compared to risk-neutral case) and, therefore, creates a higher potential for REDD implementation. We demonstrate a possibility of situations, when parties could agree on a certain range of REDD contracts, for example, smaller amounts of REDD offsets are traded for higher prices, and larger amounts for lower prices, but contracting a moderate amount at a moderate price is impossible. Higher benefit-sharing ratios can also increase contracted amounts even in the case of risk-taking electricity producer. Our modeling results highlight two ways to promote higher REDD participation: (i) increasing risk aversion of the energy producers, and (ii) implementing the mechanism of benefit/risk sharing between REDD consumer and supplier

    The value of observations for reduction of earthquake-induced loss of life on a global scale

    Get PDF
    Earthquakes on global scale cause considerable losses both in terms of economic impact and human lives. A proper coordination of disaster response activities requires observation of affected areas for evaluation of spatial distribution of damage. We use several freely available datasets including global seismic hazard assessment, data on population, gross domestic product, and urban areas to calculate expected loss of life based on rescue efficiency derived from an optimal rescue resource distribution model, which by design includes the observation capacity as a parameter. Despite of the high practical importance, the quantification of the "observation quality -- reduction of loss of life" relationship has not yet been performed for earthquakes on a global scale. Our validated quantitative results show that better Earth observations may potentially contribute to a global reduction of earthquake induced loss of life within the range 20%-90% from the "business as usual" level

    Full Carbon Account for Russia.

    Get PDF
    The Forestry Project (FOR) at IIASA has produced a full carbon account (FCA) for Russia for 1990, together with scenarios for 2010. Currently, there are rather big question marks regarding the existing carbon accounts for Russia, and Russia is critical to the global carbon balance due to its size. IIASA is in a position to perform solid analysis of Russia because of the databases that the Institute has built over the years. FOR based this work on a comprehensive geographic information system comprising georeferenced descriptions of the environment and land of Russia, which in turn are based on a number of thematic, digitized maps and databases. For the Russian energy sector and other industrial sectors (except the forest industry), the project used emissions estimates from the recent IIASA study "Global Energy Perspectives" (1998). The project carried out a separate substudy for the Russian forest industry sector. According to FOR's estimate, the total fluxes (including energy and industry sectors) in Russia were a net source of 527 teragrams of carbon (Tg C) in 1990. To illustrate the possible development of the carbon pools and fluxes over the next 10 years, FOR developed three different scenarios for the period 1990-2010, reflecting different assumptions regarding Russia's GDP growth. According to these scenarios, Russia will continue to be a net source of carbon to the atmosphere with 156-385 Tg C in 2010, including the emissions from energy and other industrial sectors. However, analysis of the FCA also shows considerable uncertainties involved in the carbon accounting. These uncertainties exceed the calculated changes in the full flux balance for the period 1990-2010. At present, this raises grave questions regarding the reliability of any accounting system used to measure terrestrial ecosystems for compliance with the Kyoto Protocol.

    Agriculture, Population, Land and Water Scarcity in a Changing World – The Role of Irrigation

    Get PDF
    Fertile land and fresh water constitute two of the most fundamental resources for food production. These resources are affected by environmental, political, economic, and technical developments. Regional impacts may transmit to the world through increased trade. With a global forest and agricultural sector model, we quantify the impacts of increased demand for food due to population growth and economic development on potential land and water use. In particular, we investigate producer adaptation regarding crop and irrigation choice, agricultural market adjustments, and changes in the values of land and water.Irrigation, Food supply, Integrated assessment, Water use intensity, Agricultural adaptation, Land scarcity, Partial equilibrium model, Resource /Energy Economics and Policy,

    Adaptation and mitigation strategies in Northern Eurasian boreal forests

    Get PDF
    Boreal forests of Northern Eurasia are experiencing ongoing changes in climate, strong impacts by humans including transformation of previously untouched landscapes, and dramatically accelerating disturbance regimes. Current global and regional climatic models predict for this region the most dramatic climatic change over the globe. Unregulated and often destructive anthropogenic impacts on the environment and natural landscapes may substantially accelerate the negative consequences of climatic change. Complexities of the situation are evident: need to take decisions for underspecified dynamics systems under uncertainties; relevancy to consider dual strategy that integrates mitigative and adaptive measures, particularly under no-regret and win-win considerations; necessity to derive minimum mitigation standards from the limits of adaptation; inevitability of non-linear responses and feedbacks and probability to meet surprises in the biosphere's behavior; etc. It defines a need for development of new philosophy of cognition and policy making by using open, iterative, distributed-modular systems based on shared pools of models, tools libraries, and data sets. Such a situation defines an obligatory need to comprehensively use methodologies of applied system analysis and integrated modeling. Following the basic steps of applied systems analysis (fixation of the problem; diagnostics; (list of) stakeholders; problem mess; setting the goal; criteria; experimental research; analysis of input information; selection of the strategy, development and improvement of the model; depiction of alternatives; and decision making implementation) put the modeling on a solid scientific basis. Integrated models that include components of different nature (ecological, economic, social) are considered as a major tool of perception of future trajectories of forests in a changing world in spite of the fact that application of integrated modeling generates many cognitive problems, trade-offs and challenges. A central point of adaptation and mitigation strategies is development of robust policies. Robust policies should (1) ensure long-term stability of systems. behavior against multiple events (scenarios); (2) account for extreme events that require specific models; (3) consider uncertainties in a possible comprehensive and explicit form; (4) allow for flexibility to form a diversity of decisions dependent on associated risks and costs, performance indicators of stakeholders, (5) consider in an explicit spatio-temporal way ecological, economic and social dimensions, (6) collective risk; (7) include safety criteria, constraints, and performance indicators of involved agents. Adaptation and mitigation measures in the forest sector could be effective if they are part of a wide strategy which would involve all relevant sectors of national economy, particularly energy, industry, agriculture, tourism etc. combined in common political and institutional frameworks. Adaptation and anticipatory strategy should be an inherent part of transition to sustainable forest management. However, background philosophy of classical forestry becomes less and less reliable in a continuously changing world. Thus, modeling becomes a working tool for practical adaptive forest management. Adaptive forest management is defined as a management approach that acknowledges the lack of unequivocal and definite knowledge about the ways in which forest ecosystems work, and the uncertainty that dominates interactions with them. We consider major requirements to and specifics of adaptation and mitigation strategies in boreal forests which include inter alia: (1) a concept of sustainable development and sustainable forest management of regions of high latitudes; (2) integrated land observing systems; (3) a new system of specially protected territories; (4) new strategy and institutional background of forest fire protection; (5) legislative and normative base of adaptation and mitigation as a background of adaptive forest management; (6) system of adaptation of structure of boreal landscapes to climate change; and (7) considering management of major biogeochemical cycles, primarily carbon cycle, as a crucial issue of future strategies. We illustrate some practical results obtained by IIASA-ESM Integrated Modeling Cluster and other approaches. These examples show that recommended strategies could result in higher stability and productivity of forest ecosystems, increased abundance of favored species and reduced fragmentation of forests. However, the biggest problem deals with difficulties to reduce losses from worsening the environment and disturbances. No single strategy appears able to achieve all possible forest management objectives, and adaptation and mitigation strategies should be connected to regional climatic, ecological and social peculiarities

    Probabilistic Spatial and Temporal Resilience Landscapes for the Congo Basin

    Get PDF
    Recent research by Hirota et al. (2011) introduced the concept of resilience landscapes for tropical forests and savannahs. Basically, the approach statistically relates the probability of current forest/savannah occurrence with the concept of tipping points, at which the ecosystem has no other choice except to switch from on stable state (e.g., forest) to its alternative stable state (e.g., savannah) or vice versa. This work will use a biogeochemical modelling approach to establish such probabilistic resilience landscapes for the Congo Basin rainforest biome. In a first step, the occurrence of tipping points will be related to climate features like annual precipitation, dry season length, occurrence of startiform non-precipitating cloud cover and the inter-annual variation in precipitation. In the second, spatial resilience landscapes for the Congo Basin will be provided using present climate conditions. Their relation to current forest/savannah distribution will be assessed and evident congruencies and discrepancies will be discussed. In a third step, the concept of temporal resilience landscapes will be developed along the patch-level life cycle dynamics of the Congo Basin rainforest biome. In a final step, the implications of results for ecosystem management decision will be assessed and possible implications on policy and land-use decisions will be presented
    • …
    corecore