1,206 research outputs found

    Two-dimensional Ising model with competing interactions and its application to clusters and arrays of π\pi-rings and adiabatic quantum computing

    Full text link
    We study planar clusters consisting of loops including a Josephson π\pi-junction (π\pi-rings). Each π\pi-ring carries a persistent current and behaves as a classical orbital moment. The type of particular state associated with the orientation of orbital moments at the cluster depends on the interaction between these orbital moments and can be easily controlled, i.e. by a bias current or by other means. We show that these systems can be described by the two-dimensional Ising model with competing nearest-neighbor and diagonal interactions and investigate the phase diagram of this model. The characteristic features of the model are analyzed based on the exact solutions for small clusters such as a 5-site square plaquette as well as on a mean-field type approach for the infinite square lattice of Ising spins. The results are compared with spin patterns obtained by Monte Carlo simulations for the 100 ×\times 100 square lattice and with experiment. We show that the π\pi-ring clusters may be used as a new type of superconducting memory elements. The obtained results may be verified in experiments and are applicable to adiabatic quantum computing where the states are switched adiabatically with the slow change of coupling constants.Comment: 32 pages, 22 figures, RevTe

    Visual discomfort from flash afterimages of riloid patterns

    Get PDF
    Op-art-based stimuli have been shown to be uncomfortable, possibly due to a combination of fixational eye movements (microsaccades) and excessive cortical responses. Efforts have been made to measure illusory phenomena arising from these stimuli in the absence of microsaccades, but there has been no attempt thus far to decouple the effects of the cortical response from the effect of fixational eye movements. This study uses flash afterimages to stablise the image on the retina and thus reduce the systematic effect of eye movements, in order to investigate the role of the brain in discomfort from op-art-based stimuli. There was a relationship between spatial frequency and the magnitude of the P300 response, showing a similar pattern to that of discomfort judgements, which suggests there might be a role of discomfort and excessive neural responses independently from the effects of microsaccades

    Discordance between clinical and immunological ART eligibility criteria for children in Malawi

    Get PDF
    Background: Since May 2014, all HIV positive children aged less than five years in Malawi are eligible for ART. For children older than five years they are eligible if they are in WHO stage III/IV, if stage I/II, if their CD4 750. Conclusion: Most children are correctly started on treatment using recent guidelines. 41% more children <5 years will be started on ART

    Axion astronomy with microwave cavity experiments

    Get PDF
    Terrestrial searches for the conversion of dark matter axions or axion-like particles into photons inside magnetic fields are sensitive to the phase space structure of the local Milky Way halo. We simulate signals in a hypothetical future experiment based on the Axion Dark Matter eXperiment (ADMX) that could be performed once the axion has been detected and a frequency range contain- ing the axion mass has been identified. We develop a statistical analysis to extract astrophysical parameters, such as the halo velocity dispersion and laboratory velocity, from such data and find that with only a few days integration time a level of precision can be reached matching that of astro- nomical observations. For longer experiments lasting up to a year in duration we find that exploiting the modulation of the power spectrum in time allows accurate measurements of the Solar peculiar velocity with an accuracy that would improve upon astronomical observations. We also simulate signals based on results from N-body simulations and find that finer substructure in the form of tidal streams would show up prominently in future data, even if only a subdominant contribution to the local dark matter distribution. In these cases it would be possible to reconstruct all the properties of a dark matter stream using the time and frequency dependence of the signal. Finally we consider the detection prospects for a network of streams from tidally disrupted axion miniclusters. These features appear much more prominently in the resolved spectrum than suggested by calculations based on a scan over a range of resonant frequencies, making the detection of axion minicluster streams more viable than previously thought. These results confirm that haloscope experiments in a post-discovery era are able to perform “axion astronomy”

    Axion minivoids and implications for direct detection

    Get PDF
    In the scenario in which QCD axion dark matter is produced after inflation, the Universe is populated by large inhomogeneities on very small scales. Eventually, these fluctuations will collapse gravitationally to form dense axion miniclusters that trap up to ∼75% of the dark matter within asteroid-mass clumps. Axion miniclusters are physically tiny however, so haloscope experiments searching for axions directly on Earth are much more likely to be probing “minivoids”—the space in between miniclusters. This scenario seems like it ought to spell doom for haloscopes, but while these minivoids might be underdense, they are not totally devoid of axions. Using Schrödinger-Poisson and N-body simulations to evolve from realistic initial field configurations, we quantify the extent to which the local ambient dark matter density is suppressed in the postinflationary scenario. We find that a typical experimental measurement will sample an axion density that is only around 10% of the expected galactic dark matter density. Our results are taken as conservative estimates and have implications for experimental campaigns lasting longer than a few years, as well as broadband haloscopes that have sensitivity to transient signatures. We show that for a Oð(year)-long integration times, the measured dark matter density should be expected to vary by 20%–30%

    Stellar kinematics from the symmetron fifth force in the Milky Way disk

    Get PDF
    It has been shown that the presence of nonminimally coupled scalar fields giving rise to a fifth force can noticeably alter dynamics on galactic scales. Such a fifth force must be screened in the Solar System but if unscreened it can have similar observational effects as a component of nonbaryonic matter. We consider this possibility in the context of the vertical motions of local stars in the Milky Way disk by reframing a methodology used to measure the local density of dark matter. By attempting to measure the properties of the symmetron field required to support vertical velocities we can test it as a theory of modified gravity and understand the behavior of screened scalar fields in galaxies. In particular, this relatively simple setup allows the symmetron field profile to be solved for model parameters where the equation of motion becomes highly nonlinear and difficult to solve in other contexts. We update the existing Solar System constraints for this scenario and find a region of parameter space not already excluded that can explain the vertical motions of local stars out to heights of 1 kpc. At larger heights the force due to the symmetron field profile exhibits a characteristic turn over which would allow the model to be distinguished from a dark matter halo

    Visual discomfort from flash afterimages of riloid patterns

    Get PDF
    Op-art-based stimuli have been shown to be uncomfortable, possibly due to a combination of fixational eye movements (microsaccades) and excessive cortical responses. Efforts have been made to measure illusory phenomena arising from these stimuli in the absence of microsaccades, but there has been no attempt thus far to decouple the effects of the cortical response from the effect of fixational eye movements. This study uses flash afterimages to stabilise the image on the retina and thus reduce the systematic effect of eye movements, in order to investigate the role of the brain in discomfort from op-art-based stimuli. There was a relationship between spatial frequency and the magnitude of the P300 response, showing a similar pattern to that of discomfort judgements, which suggests that there might be a role of discomfort and excessive neural responses independently from the effects of microsaccades

    A survey of agent-oriented methodologies

    Get PDF
    This article introduces the current agent-oriented methodologies. It discusses what approaches have been followed (mainly extending existing object oriented and knowledge engineering methodologies), the suitability of these approaches for agent modelling, and some conclusions drawn from the survey

    On the Price of Anarchy of Highly Congested Nonatomic Network Games

    Full text link
    We consider nonatomic network games with one source and one destination. We examine the asymptotic behavior of the price of anarchy as the inflow increases. In accordance with some empirical observations, we show that, under suitable conditions, the price of anarchy is asymptotic to one. We show with some counterexamples that this is not always the case. The counterexamples occur in very simple parallel graphs.Comment: 26 pages, 6 figure
    corecore