43 research outputs found

    Electroactive Polyhydroquinone Coatings for Marine Fouling Prevention—A Rejected Dynamic pH Hypothesis and a Deceiving Artifact in Electrochemical Antifouling Testing

    Get PDF
    Nanometer-thin coatings of polyhydroquinone (PHQ), which release and absorb protons upon oxidation and reduction, respectively, were tested for electrochemically induced anti-biofouling activity under the hypothesis that a dynamic pH environment would discourage fouling. Antifouling tests in artificial seawater using the marine, biofilm-forming bacterium Vibrio alginolyticus proved the coatings to be ineffective in fouling prevention but revealed a deceiving artifact from the reactive species generated at the counter electrode (CE), even for electrochemical bias potentials as low as |400| mV versus Ag|AgCl. These findings provide valuable information on the preparation of nanothin PHQ coatings and their electrochemical behavior in artificial seawater. The results further demonstrate that it is critical to isolate the CE in electrochemical anti-biofouling testing

    PMH15 ANNUAL SOCIETAL COSTS AND QUALITY OF LIFE IN CHILDREN WITH NEUROPSYCHIATRIC DISORDERS IN SWEDEN

    Get PDF

    Polyethyleneimine functionalized mesoporous diatomite particles for selective copper recovery from aqueous media

    Get PDF
    Abstract not availableAtaollah Nosrati, Mikael Larsson, Johan B. Lindén, Zhang Zihao, Jonas Addai-Mensah, Magnus Nydé

    Charged microcapsules for controlled release of hydrophobic actives Part II: surface modification by LbL adsorption and lipid bilayer formation on properly anchored dispersant layers

    No full text
    Charge microcapsules with a dodecane core and a poly(methyl methacrylate) (PMMA) shell have been prepared via the internal phase separation method using ionic dispersants. The microcapsules have subsequently been surface modified with polyelectrolyte multilayers and lipid bilayers. Two types of ionic dispersant systems have been investigated: a small set of ionic amphiphilic block copolymers of poly(methyl methacrylate)-block-poly(sodium (meth)acrylate) type and an oil-soluble anionic surfactant, sodium 1,5-dioxo-1,5-bis(3,5,5-trimethylhexyloxy)-3-((3,5,5trimethylhexyloxy)carbonyl)pentane-2-sulfonate, in combination with a water-soluble polycation, poly(diallyldimethylammonium chloride). The Layer-by-Layer adsorption of the polyelectrolyte pair poly(diallydimethylammonium chloride) (350,000 g/mol) and poly(sodium methacrylate) (15,000 g/mol) was successfully made on both microcapsule systems with the formation of very thin multilayers as indicated with quartz crystal microbalance with dissipation monitoring (QCM-D) measurements on model surfaces. Formation of a lipid bilayer on the surface of the microcapsules from liposomes with a charge opposite that of the capsule surface was also proven to be successful as indicated by the f-potential of the microcapsules, the characteristic frequency shift as measured with QCM-D and fluorescence recovery after photobleaching (FRAP) on model systems. However, the proper anchorage of the dispersants in the underlying PMMA surface was key for the successful surface modification.

    Microstructure of polymer hydrogels studied by pulsed field gradient NMR diffusion and TEM methods

    No full text
    The microstructure of various alginate gels have been studied by pulsed field gradient NMR (PFG NMR) and transmission electron microscopy (TEM). The reduced diffusivity of dendrimer diffusion within the gels has been obtained from PFG NMR diffusion experiments. The polymer strand radius, an important microstructural property, has been extracted from various diffusion models. The results agree well with the polymer strand radii obtained from image analysis of the corresponding TEM micrographs
    corecore