24 research outputs found

    Cellulolytic activity in leachate during leach-bed anaerobic digestion of municipal solid waste

    No full text
    The degradation of municipal solid waste (MSW) under mesophilic conditions can be enhanced by exchanging leachate between fresh waste and stabilised waste. The optimum point in time when leachate from an anaerobically digesting waste bed can be used to initiate degradation of another waste bed might occur when the leachate of the digesting waste bed is highly active with cellulolytic and methanogenic bacteria. In this study, the cellulolytic activity of the leachate was measured using the cellulose-azure assay. As products of hydrolysis are soluble compounds, the rate of generation of these compounds was estimated based on a soluble chemical oxygen demand (SCOD) balance around the fresh waste bed. It was found that once the readily soluble material present in MSW was washed out there was very little generation of SCOD without the production of methane, indicating that flushing leachate from a stabilised waste bed resulted in a balanced inoculation of the fresh waste bed. With the onset of sustained methanogenesis, the rate of SCOD generation equalled the SCOD released from the digester as methane. The experimental findings also showed that cellulolytic activities of the leachate samples closely followed the trend of SCOD generation. (C) 2001 Elsevier Science Ltd. All rights reserved

    Effect of Substrate Feeding Concentration on Initial Biofilm Development in Anaerobic Hybrid Reactor

    No full text
    To elucidate the effect of substrate concentration on biofilm development, glucose concentrations of 500 and 1,000 mg/L were used.  At an early stage, biofilm development at both concentrations was not significantly different (P=0.621).  After removing suspended biomass at 24 operational hours, the biofilm development at high substrate concentration was higher than at lower concentration.  At 72 operational hours, the amounts of attached biomass at low and high glucose feeding were 9.04±1.17 and 28.58±2.72 g VSS/m2, respectively.  The activities of acidogens, acetogens, and methanogens at the low glucose concentration were 0.334, 0.016 and 0.003 g COD/g VSS/h, and those at the high glucose concentration were 0.145, 0.003 and 0.001 g COD/g VSS/h, respectively.  Moreover, the ratio of methanogenic activity at low glucose concentration was higher than at high glucose concentration.  The glucose utilization at low and high feeding concentrations was 33% and 27%, respectively.  These results indicated that rapid biofilm development by using high substrate concentration would be less beneficial if unbalance of methanogenic ratio was found in biofilm

    Comparative performance and microbial community of single-phase and two-phase anaerobic systems co-digesting cassava pulp and pig manure

    No full text
    In this study, we illustrated the performance and microbial community of single- and two-phase systems anaerobically co-digesting cassava pulp and pig manure. The results showed that the volatile solid reduction and biogas productivity of two-phase CSTR were 66 ± 4% and 2000 ± 210 ml l-1 d-1, while those of singlephase CSTR were 59 ± 1% and 1670 ± 60 ml l-1 d-1, respectively. Codigestion in two-phase CSTR gave higher 12% solid degradation and 25% methane production than single-phase CSTR. Phylogenetic analysis of 16S rDNA clone library revealed that the Bacteroidetes were the most abundant group, followed by the Clostridia in singlephase CSTR. In hydrolysis/acidification reactor of two-phase system, the bacteria within the phylum Firmicutes, especially Clostridium, Eubacteriaceae and Lactobacillus were the dominant phylogenetic groups. Among the Archaea, Methanosaeta sp. was the exclusive predominant in both digesters while the relative abundance of Methanosaeta sp. and Methanospirillum hungatei differed between the two systems

    Evaluation of methanogenic activities during anaerobic digestion of municipal solid waste

    No full text
    Numerous researchers have demonstrated that the rate and extent of the degradation of municipal solid waste (MSW) call be enhanced beyond that observed in a conventional landfill by adding moisture, buffering agents and sources of microorganisms such as anaerobically digested sludge. One method of achieving the addition of these agents is by directing leachate that has trickled through a bed of anaerobically stabilised waste to beds of fresh MSW. Proper operational strategies need to be developed for successful implementation of this process on a large scale or in a landfill. Operational parameters of primary importance are the point of time at which a stabilised waste bed can be used for sequencing, the period of sequencing and the minimal amount of leachate that has to be recirculated to rapidly attain balanced microbial activity in a fresh waste bed. Assays that measure a substrate-specific methanogenic activity of an anaerobic microbial consortia have been previously developed by researchers. These assays were employed in this study to evaluate the microbial activity of the leachate for utilisation of substrates like cellulose, acetate and formate. Activity in leachate samples, taken from a batch of MSW at various times during the degradation process, was measured in terms of the amount of methane produced in 4 h after spiking the sample with one of the selected substrates. Activity resulting front the utilisation of formate and cellulose showed considerable promise as indicators for optimising operational strategies. It was observed that the formate degradation activity followed the methane production rate with both reaching a maximum at the same time and that this could be used as an indicator for determining the period of sequencing. Cellulose activity in fresh waste beds responded to flushes of mature leachate and peaked a few days after sequencing was terminated
    corecore