11,648 research outputs found

    All-optical transport and compression of ytterbium atoms into the surface of a solid immersion lens

    Full text link
    We present an all-optical method to load 174Yb atoms into a single layer of an optical trap near the surface of a solid immersion lens which improves the numerical aperture of a microscope system. Atoms are transported to a region 20 um below the surface using a system comprised by three optical dipole traps. The "optical accordion" technique is used to create a condensate and compress the atoms to a width of 120 nm and a distance of 1.8 um away from the surface. Moreover, we are able to verify that after compression the condensate behaves as a two-dimensional quantum gas.Comment: 5 pages, 5 figure

    Solvent-free coarse-grained lipid model for large-scale simulations

    Full text link
    A coarse-grained molecular model, which consists of a spherical particle and an orientation vector, is proposed to simulate lipid membrane on a large length scale. The solvent is implicitly represented by an effective attractive interaction between particles. A bilayer structure is formed by orientation-dependent (tilt and bending) potentials. In this model, the membrane properties (bending rigidity, line tension of membrane edge, area compression modulus, lateral diffusion coefficient, and flip-flop rate) can be varied over broad ranges. The stability of the bilayer membrane is investigated via droplet-vesicle transition. The rupture of the bilayer and worm-like micelle formation can be induced by an increase in the spontaneous curvature of the monolayer membrane.Comment: 13 pages, 19 figure

    Evidence for a Molecular Cloud Origin for Gamma-Ray Bursts: Implications for the Nature of Star Formation in the Universe

    Get PDF
    It appears that the majority of rapidly-, well-localized gamma-ray bursts with undetected, or dark, optical afterglows, or `dark bursts' for short, occur in clouds of size R > 10L_{49}^{1/2} pc and mass M > 3x10^5L_{49} M_{sun}, where L is the isotropic-equivalent peak luminosity of the optical flash. We show that clouds of this size and mass cannot be modeled as a gas that is bound by pressure equilibrium with a warm or hot phase of the interstellar medium (i.e., a diffuse cloud): Such a cloud would be unstable to gravitational collapse, resulting in the collapse and fragmentation of the cloud until a burst of star formation re-establishes pressure equilibrium within the fragments, and the fragments are bound by self-gravity (i.e., a molecular cloud). Consequently, dark bursts probably occur in molecular clouds, in which case dark bursts are probably a byproduct of this burst of star formation if the molecular cloud formed recently, and/or the result of lingering or latter generation star formation if the molecular cloud formed some time ago. We then show that if bursts occur in Galactic-like molecular clouds, the column densities of which might be universal, the number of dark bursts can be comparable to the number of bursts with detected optical afterglows: This is what is observed, which suggests that the bursts with detected optical afterglows might also occur in molecular clouds. We confirm this by modeling and constraining the distribution of column densities, measured from absorption of the X-ray afterglow, of the bursts with detected optical afterglows: We find that this distribution is consistent with the expectation for bursts that occur in molecular clouds, and is not consistent with the expectation for bursts that occur in diffuse clouds. More...Comment: Accepted to The Astrophysical Journal, 22 pages, 6 figures, LaTe

    Dynamic model and stationary shapes of fluid vesicles

    Full text link
    A phase-field model that takes into account the bending energy of fluid vesicles is presented. The Canham-Helfrich model is derived in the sharp-interface limit. A dynamic equation for the phase-field has been solved numerically to find stationary shapes of vesicles with different topologies and the dynamic evolution towards them. The results are in agreement with those found by minimization of the Canham-Helfrich free energy. This fact shows that our phase-field model could be applied to more complex problems of instabilities.Comment: Accepted for publication in EPJE. 9 pages, 7 figure
    corecore