1,025 research outputs found

    Derivatives and inequalities for order parameters in the Ising spin glass

    Full text link
    Identities and inequalities are proved for the order parameters, correlation functions and their derivatives of the Ising spin glass. The results serve as additional evidence that the ferromagnetic phase is composed of two regions, one with strong ferromagnetic ordering and the other with the effects of disorder dominant. The Nishimori line marks a crossover between these two regions.Comment: 10 pages; 3 figures; new inequalities added, title slightly change

    Multicritical points for the spin glass models on hierarchical lattices

    Full text link
    The locations of multicritical points on many hierarchical lattices are numerically investigated by the renormalization group analysis. The results are compared with an analytical conjecture derived by using the duality, the gauge symmetry and the replica method. We find that the conjecture does not give the exact answer but leads to locations slightly away from the numerically reliable data. We propose an improved conjecture to give more precise predictions of the multicritical points than the conventional one. This improvement is inspired by a new point of view coming from renormalization group and succeeds in deriving very consistent answers with many numerical data.Comment: 11 pages, 9 figures, 7 tables This is the published versio

    Quantum annealing with antiferromagnetic fluctuations

    Full text link
    We introduce antiferromagnetic quantum fluctuations into quantum annealing in addition to the conventional transverse-field term. We apply this method to the infinite-range ferromagnetic p-spin model, for which the conventional quantum annealing has been shown to have difficulties to find the ground state efficiently due to a first-order transition. We study the phase diagram of this system both analytically and numerically. Using the static approximation, we find that there exists a quantum path to reach the final ground state from the trivial initial state that avoids first-order transitions for intermediate values of p. We also study numerically the energy gap between the ground state and the first excited state and find evidence for intermediate values of p that the time complexity scales polynomially with the system size at a second-order transition point along the quantum path that avoids first-order transitions. These results suggest that quantum annealing would be able to solve this problem with intermediate values of p efficiently in contrast to the case with only simple transverse-field fluctuations.Comment: 19 pages, 11 figures; Added references; To be published in Physical Review

    Stability in microcanonical many-body spin glasses

    Full text link
    We generalize the de Almeida-Thouless line for the many-body Ising spin glass to the microcanonical ensemble and show that it coincides with the canonical one. This enables us to draw a complete microcanonical phase diagram of this model

    Symmetry, complexity and multicritical point of the two-dimensional spin glass

    Full text link
    We analyze models of spin glasses on the two-dimensional square lattice by exploiting symmetry arguments. The replicated partition functions of the Ising and related spin glasses are shown to have many remarkable symmetry properties as functions of the edge Boltzmann factors. It is shown that the applications of homogeneous and Hadamard inverses to the edge Boltzmann matrix indicate reduced complexities when the elements of the matrix satisfy certain conditions, suggesting that the system has special simplicities under such conditions. Using these duality and symmetry arguments we present a conjecture on the exact location of the multicritical point in the phase diagram.Comment: 32 pages, 6 figures; a few typos corrected. To be published in J. Phys.

    Location of the Multicritical Point for the Ising Spin Glass on the Triangular and Hexagonal Lattices

    Full text link
    A conjecture is given for the exact location of the multicritical point in the phase diagram of the +/- J Ising model on the triangular lattice. The result p_c=0.8358058 agrees well with a recent numerical estimate. From this value, it is possible to derive a comparable conjecture for the exact location of the multicritical point for the hexagonal lattice, p_c=0.9327041, again in excellent agreement with a numerical study. The method is a variant of duality transformation to relate the triangular lattice directly with its dual triangular lattice without recourse to the hexagonal lattice, in conjunction with the replica method.Comment: 9 pages, 1 figure; Minor corrections in notatio

    Duality and Multicritical Point of Two-Dimensional Spin Glasses

    Full text link
    Determination of the precise location of the multicritical point and phase boundary is a target of active current research in the theory of spin glasses. In this short note we develop a duality argument to predict the location of the multicritical point and the shape of the phase boundary in models of spin glasses on the square lattice.Comment: 4 pages, 1 figure; Reference updated, definition of \tilde{V} added; to be published in J. Phys. Soc. Jp

    Multicritical Points of Potts Spin Glasses on the Triangular Lattice

    Full text link
    We predict the locations of several multicritical points of the Potts spin glass model on the triangular lattice. In particular, continuous multicritical lines, which consist of multicritical points, are obtained for two types of two-state Potts (i.e., Ising) spin glasses with two- and three-body interactions on the triangular lattice. These results provide us with numerous examples to further verify the validity of the conjecture, which has succeeded in deriving highly precise locations of multicritical points for several spin glass models. The technique, called the direct triangular duality, a variant of the ordinary duality transformation, directly relates the triangular lattice with its dual triangular lattice in conjunction with the replica method.Comment: 18 pages, 2, figure

    Exact Solution of the Infinite-Range Quantum Mattis Model

    Full text link
    We have solved the quantum version of the Mattis model with infinite-range interactions. A variational approach gives the exact solution for the infinite-range system, in spite of the non-commutative nature of the quantum spin components; this implies that quantum effects are not predominant in determining the macroscopic properties of the system. Nevertheless, the model has a surprisingly rich phase behaviour, exhibiting phase diagrams with tricritical, three-phase and critical end points.Comment: 14 pages, 11 figure
    corecore