680 research outputs found

    No-scale supergravity confronts LEP diphoton events

    Get PDF
    We examine the possibility that some anomalous acoplanar diphoton events observed at LEP may be consistent with the predictions of our previously proposed one-parameter no-scale supergravity model with a light gravitino, via the process e^+e^- -> chi chi -> gamma gamma+E_miss. We find that one such event may indeed be consistent with the model predictions for m_chi \approx (60-70) GeV. This region of parameter space is also consistent with the selectron and chargino interpretations of the CDF ee gamma gamma + E_T,miss event.Comment: 9 pages, LaTeX, 4 figures (included). Updated to include full LEP161 dat

    The SuperWorlds of SU(5) and SU(5)xU(1): A Critical Assessment and Overview

    Full text link
    We present an overview of the simplest supergravity models which enforce radiative breaking of the electroweak symmetry, namely the minimal SU(5)SU(5) supergravity model and the class of string-inspired/derived supergravity models based on the flipped SU(5)×U(1)SU(5)\times U(1) structure supplemented by a minimal set of additional matter representations such that unification occurs at the string scale (\sim10^{18}\GeV). These models can be fully parametrized in terms of the top-quark mass, the ratio tanβ=v2/v1\tan\beta=v_2/v_1, and three supersymmetry breaking parameters (m1/2,m0,Am_{1/2},m_0,A). The latter are chosen in the minimal SU(5)SU(5) model such that the stringent constraints from proton decay and cosmology are satisfied. In the flipped SU(5)SU(5) case we consider two string-inspired supersymmetry breaking scenaria: SU(N,1)SU(N,1) no-scale supergravity and a dilaton-induced supersymmetry breaking scenario. Both imply universal soft supersymmetry breaking parameters: m0=A=0m_0=A=0 and m_0=\coeff{1}{\sqrt{3}}m_{1/2}, A=-m_{1/2} respectively. We present a comparative study of the sparticle and Higgs spectra of both flipped SU(5)SU(5) models and the minimal SU(5)SU(5) model and conclude that all can be partially probed at the Tevatron and LEPII (and the flipped models at HERA too). In both flipped SU(5)SU(5) cases there is a more constrained version which allows to determine tanβ\tan\beta in terms of mt,mg~m_t,m_{\tilde g} and which leads to much sharper and readily accessible experimental predictions. We also discuss the prospects for indirect experimental detection: a non-trivial fraction of the parameter space of the flipped SU(5)SU(5) models is in conflict with the present experimental allowed range for the bsγb\to s\gamma rare decay mode, and the one-loop electroweak radiative corrections imply the 90\% CL upper boundComment: CERN-TH.6934/93, CTP-TAMU-34/93, LaTeX, 58 pages, 20 embedded figures. Complete ps file (~12000 blocks, 5.24MB) available via anonymous ftp from site tamsun.tamu.edu in directory incoming, filename: CTP-TAMU-34-93.p

    SU(5)xU(1): a string paradigm of a TOE and its experimental consequences

    Full text link
    We present a string-inspired/derived supergravity model based on the flipped SU(5)×U(1)SU(5)\times U(1) structure supplemented by a minimal set of additional matter representations such that unification occurs at the string scale (\sim10^{18}\GeV). This model is complemented by two string supersymmetry breaking scenaria: the SU(N,1)SU(N,1) no-scale supergravity model and a dilaton-induced supersymmetry breaking scenario. Both imply universal soft supersymmetry breaking parameters: m0=0,A=0m_0=0, A=0 and m_0=\coeff{1}{\sqrt{3}}m_{1/2}, A=-m_{1/2} respectively. In either case the models depend on only three parameters: mtm_t, tanβ\tan\beta, and mg~m_{\tilde g}. We present a comparative study of the sparticle and Higgs spectra of both models and conclude that even though both can be partially probed at the Tevatron, LEPII, and HERA, a larger fraction of the parameter space of the no-scale model is actually accessible. In both cases there is a more constrained version which allows to determine tanβ\tan\beta in terms of mt,mg~m_t,m_{\tilde g}. In the strict no-scale case we find that the value of mtm_t determines the sign of μ\mu (\mu>0:\,m_t\lsim135\GeV, \mu<0:\,m_t\gsim140\GeV) and whether the lightest Higgs boson mass is above or below 100\GeV. In the more constrained version of the dilaton scenario, tanβ1.41.6\tan\beta\approx1.4-1.6 and m_t\lsim155\GeV, 61\GeV\lsim m_h\lsim91\GeV follow. Thus, continuing Tevatron top-quark searches and LEPI,II Higgs searches could probe this restricted scenario completely.Comment: CERN-TH.6926/93, CTP-TAMU-33/93, LaTeX, 33 pages, 11 embedded figures. Significant numerical correction to the dilaton scenario. Complete ps file (7943 blocks,3.33MB) available via anonymous ftp from site tamsun.tamu.edu in directory incoming, filename: CTP-TAMU-33-93.p

    A No-Scale Framework for Sub-Planckian Physics

    Full text link
    We propose a minimal model framework for physics below the Planck scale with the following features: (i) it is based on no-scale supergravity, as favoured in many string compactifications, (ii) it incorporates Starobinsky-like inflation, and hence is compatible with constraints from the Planck satellite, (iii) the inflaton may be identified with a singlet field in a see-saw model for neutrino masses, providing an efficient scenario for reheating and leptogenesis, (iv) supersymmetry breaking occurs with an arbitrary scale and a cosmological constant that vanishes before radiative corrections, (v) regions of the model parameter space are compatible with all LHC, Higgs and dark matter constraints.Comment: 6 pages, 2 figures, some minor corrections and additions. Final versio

    From R2R^2 Gravity to No-Scale Supergravity

    Full text link
    We show that R2R^2 gravity coupled conformally to scalar fields is equivalent to the real bosonic sector of SU(N,1)/SU(N)×\timesU(1) no-scale supergravity, where the conformal factor can be identified with the K\"ahler potential, and we review the construction of Starobinsky-like models of inflation within this framework.Comment: 15 pages, version accepted for publicatio

    Starobinsky-like Inflationary Models as Avatars of No-Scale Supergravity

    Full text link
    Models of cosmological inflation resembling the Starobinsky R + R^2 model emerge naturally among the effective potentials derived from no-scale SU(N,1)/SU(N) x U(1) supergravity when N > 1. We display several examples in the SU(2,1)/SU(2) x U(1) case, in which the inflaton may be identified with either a modulus field or a matter field. We discuss how the modulus field may be stabilized in models in which a matter field plays the role of the inflaton. We also discuss models that generalize the Starobinsky model but display different relations between the tilt in the spectrum of scalar density perturbations, n_s, the tensor-to-scalar ratio, r, and the number of e-folds, N_*. Finally, we discuss how such models can be probed by present and future CMB experiments.Comment: 23 pages, 3 figure

    Probing the No-Scale F{\cal F}-SU(5)SU(5) One-Parameter Model via Gluino Searches at the LHC2

    Full text link
    In our recent paper entitled "The return of the King: No-Scale F{\cal F}-SU(5)SU(5)", we showed that the model space supporting the most favorable phenomenology should have been probed in 2016 at the LHC2, with an even further reach into this region of the model in 2017-18. This ideal realm of the one-parameter version of No-Scale F{\cal F}-SU(5)SU(5) yields a 1.9-2.3 TeV gluino mass at the very same point where the light Higgs boson mass enters its rather narrow experimentally determined range of mh=125.09±0.24m_h = 125.09 \pm 0.24 GeV. Given the recent results reported at Moriond 2017 for 36 fb1{\rm fb}^{-1} of luminosity collected in 2016 at the 13 TeV LHC2, we now update the status of the No-Scale F{\cal F}-SU(5)SU(5) model space in light of the gluino mass exclusion limits presented by the ATLAS and CMS Collaborations. We illustrate that a resolution could be reached soon as to whether supersymmetry lives in this most critical region of the model space.Comment: 4 pages, 2 figures, Physics Letters B versio

    The strongest experimental constraints on SU(5)xU(1) supergravity models

    Full text link
    We consider a class of well motivated string-inspired flipped SU(5)SU(5) supergravity models which include four supersymmetry breaking scenarios: no-scale, strict no-scale, dilaton, and special dilaton, such that only three parameters are needed to describe all new phenomena (mt,tanβ,mg~)(m_t,\tan\beta,m_{\tilde g}). We show that the LEP precise measurements of the electroweak parameters in the form of the ϵ1\epsilon_1 variable, and the CLEOII allowed range for \bsg are at present the most important experimental constraints on this class of models. For m_t\gsim155\,(165)\GeV, the ϵ1\epsilon_1 constraint (at 90(95)\%CL) requires the presence of light charginos (m_{\chi^\pm_1}\lsim50-100\GeV depending on mtm_t). Since all sparticle masses are proportional to mg~m_{\tilde g}, m_{\chi^\pm_1}\lsim100\GeV implies: m_{\chi^0_1}\lsim55\GeV, m_{\chi^0_2}\lsim100\GeV, m_{\tilde g}\lsim360\GeV, m_{\tilde q}\lsim350\,(365)\GeV, m_{\tilde e_R}\lsim80\,(125)\GeV, m_{\tilde e_L}\lsim120\,(155)\GeV, and m_{\tilde\nu}\lsim100\,(140)\GeV in the no-scale (dilaton) flipped SU(5)SU(5) supergravity model. The \bsg constraint excludes a significant fraction of the otherwise allowed region in the (mχ1±,tanβ)(m_{\chi^\pm_1},\tan\beta) plane (irrespective of the magnitude of the chargino mass), while future experimental improvements will result in decisive tests of these models. In light of the ϵ1\epsilon_1 constraint, we conclude that the outlook for chargino and selectron detection at LEPII and at HERA is quite favorable in this class of models.Comment: CTP-TAMU-40/93, Latex, 13 pages, 10 figures (available as uuencoded 0.963MB file from [email protected]

    QED-Cavity model of microtubules implies dissipationless energy transfer and biological quantum teleportation

    Get PDF
    We refine a QED-cavity model of microtubules (MTs), proposed earlier by two of the authors (N.E.M. and D.V.N.), and suggest mechanisms for the formation of biomolecular mesoscopic coherent and/or entangled quantum states, which may avoid decoherence for times comparable to biological characteristic times. This refined model predicts dissipationless energy transfer along such "shielded" macromolecules at near room temperatures as well as quantum teleportation of states across MTs and perhaps neurons.Comment: 20 pages LATEX, three ps figures incorporate

    New phenomena in the standard no-scale supergravity model

    Get PDF
    We revisit the no-scale mechanism in the context of the simplest no-scale supergravity extension of the Standard Model. This model has the usual five-dimensional parameter space plus an additional parameter ξ3/2m3/2/m1/2\xi_{3/2}\equiv m_{3/2}/m_{1/2}. We show how predictions of the model may be extracted over the whole parameter space. A necessary condition for the potential to be stable is StrM4>0{\rm Str}{\cal M}^4>0, which is satisfied if \bf m_{3/2}\lsim2 m_{\tilde q}. Order of magnitude calculations reveal a no-lose theorem guaranteeing interesting and potentially observable new phenomena in the neutral scalar sector of the theory which would constitute a ``smoking gun'' of the no-scale mechanism. This new phenomenology is model-independent and divides into three scenarios, depending on the ratio of the weak scale to the vev at the minimum of the no-scale direction. We also calculate the residual vacuum energy at the unification scale (C0m3/24C_0\, m^4_{3/2}), and find that in typical models one must require C0>10C_0>10. Such constraints should be important in the search for the correct string no-scale supergravity model. We also show how specific classes of string models fit within this framework.Comment: 11pages, LaTeX, 1 figure (included), CERN-TH.7433/9
    corecore