469 research outputs found

    A review on invasions by parasites with complex life cycles: The European strain of Echinococcus multilocularis in North America as a model

    Get PDF
    In a fast-changing and globalized world, parasites are moved across continents at an increasing pace.Co-invasion of parasites and their hosts is leading to the emergence of infectious diseases at a global scale, underlining the need for integration of biological invasions and disease ecology research.In this review, the ecological and evolutionary factors influencing the invasion process of parasites with complex life cycles were analyzed, using the invasion of the European strain of Echinococcus multilocularis in North America as a model.The aim was to propose an ecological framework for investigating the invasion of parasites that are trophically transmitted through predator-prey interactions, showing how despite the complexity of the cycles and the interactions among multiple hosts, such parasites can overcome multiple barriers and become invasive Identifying the key ecological processes affecting the success of parasite invasions is an important step for risk assessment and development of management strategies, particularly for parasites with the potential to infect people (i.e.zoonotic)

    Protection status, human disturbance, snow cover and trapping drive density of a declining wolverine population in the Canadian Rocky Mountains

    Get PDF
    Protected areas are important in species conservation, but high rates of human-caused mortality outside their borders and increasing popularity for recreation can negatively affect wildlife populations. We quantified wolverine (Gulo gulo) population trends from 2011 to 2020 in > 14,000 km2 protected and non-protected habitat in southwestern Canada. We conducted wolverine and multi-species surveys using non-invasive DNA and remote camera-based methods. We developed Bayesian integrated models combining spatial capture-recapture data of marked and unmarked individuals with occupancy data. Wolverine density and occupancy declined by 39%, with an annual population growth rate of 0.925. Density within protected areas was 3 times higher than outside and declined between 2011 (3.6 wolverines/1000 km2) and 2020 (2.1 wolverines/1000 km2). Wolverine density and detection probability increased with snow cover and decreased near development. Detection probability also decreased with human recreational activity. The annual harvest rate of ≥ 13% was above the maximum sustainable rate. We conclude that humans negatively affected the population through direct mortality, sub-lethal effects and habitat impacts. Our study exemplifies the need to monitor population trends for species at risk—within and between protected areas—as steep declines can occur unnoticed if key conservation concerns are not identified and addressed

    A global assessment of Echinococcus multilocularis infections in domestic dogs: proposing a framework to overcome past methodological heterogeneity

    Get PDF
    Echinococcus multilocularis, the aetiological agent of human Alveolar Echinococcosis, is transmitted between small mammals and wild or domestic canids. Dogs infected with E. multilocularis as dead-end hosts. Whereas E. multilocularis infections in wild hosts and humans have been well-studied in recent decades, infections in domestic dogs are sparsely reported. This literature review and meta-analysis highlighted gaps in the available data and provided a re-assessment of the global distribution of domestic dog E. multilocularis infections. We found 46 published articles documenting the prevalence of E. multilocularis in domestic dogs from 21 countries across Europe, Asia and North America. Apparent prevalence estimates ranged from 0.00% (0.00–0.33%) in Germany to 55.50% (26.67–81.12%) in China. Most studies were conducted in areas of high human Alveolar Echinococcosis. By accounting for reassessed diagnostic sensitivity and specificity, we estimated true prevalence in a subset of studies, which varied between 0.00% (0.00–12.42%) and 41.09% (21.12–65.81%), as these true prevalence estimates were seldom reported in the articles themselves. Articles also showed a heavy emphasis on rural dogs, dismissing urban ones, which is concerning due to the role urbanisation plays in the transmission of zoonotic diseases, especially those utilising pets as definitive hosts. Lastly, population studies on canine Alveolar Echinococcosis were absent, highlighting the relative focus on human rather than animal health. We thus developed a framework for investigating domestic dog E. multilocularis infections and performing risk assessment of dog-associated transmission to fill the gaps found in the literature

    Evaluating risk effects of industrial features on woodland caribou habitat selection in west central Alberta using agent-based modelling

    Get PDF
    AbstractAlberta woodland caribou (Rangifer tarandus) are classified as threatened in Canada, and a local population in the west-central region, the Little Smoky herd, is at immediate risk of extirpation due, in part, to anthropogenic activities such as oil, gas, and forestry that have altered the ecosystem dynamics. To investigate these impacts, we have developed a spatially explicit, agent-based model (ABM) to simulate winter habitat selection and use of woodland caribou, and to determine the relative impacts of different industrial features on caribou habitat-selection strategies. The ABM model is composed of cognitive caribou agents possessing memory and decision-making heuristics that act to optimize tradeoffs between energy acquisition and disturbance. A set of environmental data layers was used to develop a virtual grid representing the landscape over which caribou move. This grid contained forage-availability, energy-content, and predation-risk values. The model was calibrated using GPS data from caribou radio collars (n = 13) deployed over six months from 2004 to 2005, representing caribou winter activities. Additional simulations were conducted on caribou habitat-selection strategies by assigning industrial features (i.e., roads, seismic lines, pipelines, well sites, cutblocks and burns) different levels of disturbance depending on their type, age, and density. Differences in disturbance effects between industry features were confirmed by verifying which resultant simulations of caribou movement patterns most closely match actual caribou distributions and other patterns extracted from the GPS data. The results elucidate the degree to which caribou perceive different industry features as disturbance, and the differential energetic costs associated with each, thus offering insight into why caribou are choosing the habitats they use, and consequently, the level and type of industry most likely to affect their bioenergetics and fitness

    Host spatiotemporal overlap in a park with high endemicity of Echinococcus multilocularis

    Get PDF
    There has been a spate of recent cases of human alveolar echinococcosis (AE) in Alberta, Canada. Alveolar echinococcosis is caused by Echinococcus multilocularis, which is prevalent among coyote populations and present in domestic dogs in Alberta. Using qPCR, we estimated the seasonal fecal prevalence of E. multilocularis in coyotes and dogs in a multiuse recreation area close to Edmonton, Alberta, where we also setup remote cameras to model seasonal changes in the overlap in temporal activity and the spatial intensity of use among coyotes, humans, and dogs, as a proxy of potential transmission. We detected E. multilocularis in 18 of 137 wild canid feces and none in 44 dog feces. After correcting for the qPCR test’s sensitivity and specificity, we estimated at 15.7% (9.7-22.7%, 95% CrI) the true fecal prevalence for coyotes. Temporal overlap between coyotes and both humans and dogs increased in the fall and winter relative to the spring and summer. Coyote intensity of use showed seasonal variations and was higher on maintained trails and locations closer to visitor parking and at sites with high intensity of dog use. Our results reinforce the need of an integrated approach, typical of both One-Health and Eco-Health, to park management for minimizing the likelihood of transmission where human and dog activity results in significant overlap with the one of the natural definitive hosts of zoonotic parasites

    Deep amplicon sequencing highlights low intra-host genetic variability of echinococcus multilocularis and high prevalence of the european-type haplotypes in coyotes and red foxes in Alberta, Canada

    Get PDF
    Echinococcus multilocularis (Em) is a zoonotic parasite considered a global emergent path-ogen. Recent findings indicate that the parasite is expanding its range in North America and that European-type haplotypes are circulating in western Canada. However, genetic analy-ses are usually conducted only on a few parasites out of thousands of individuals within each definitive host, likely underestimating the prevalence of less common haplotypes. Moreover, mixed infections with several mtDNA haplotypes in the same host have been reported, but their relative abundance within the host was never estimated. We aimed to 1) estimate the frequency of co-infections of different Em haplotypes in coyotes (Canis latrans) and red foxes (Vulpes vulpes) from western Canada and their relative abundance within the definitive hosts, 2) detect less prevalent haplotypes by sampling a larger proportion of the parasite subpopulation per host, and 3) investigate differences in the distribution of Em hap-lotypes in these main definitive hosts; foxes and coyotes. We extracted DNA from ~10% of the worm subpopulation per host (20 foxes and 47 coyotes) and used deep amplicon sequencing (NGS technology) on four loci, targeting the most polymorphic regions from the mitochondrial genes cox1 (814 bp), nad1 (344 bp), and cob (387 bp). We detected the presence of mixed infections with multiple Em haplotypes and with different Echinococcus species including Em and E. granulosus s.l. genotypes G8/G10, low intraspecific diversity of Em, and a higher abundance of the European-type haplotypes in both hosts. Our results suggest a population expansion of the European over the North American strain in Alberta and a limited distribution of some European-type haplotypes. Our findings indicate that deep amplicon sequencing represents a valuable tool to characterize Em in multiple hosts, to assess the current distribution and possible origins of the European strain in North America. The potential use of next-generation sequencing technologies is particularly important to understand the patterns of geographic expansion of this parasite

    Human Activity Differentially Redistributes Large Mammals in the Canadian Rockies National Parks

    Get PDF
    National parks are important for conservation of species such as wolves (Canis lupus) and elk (Cervus canadensis). However, topography, vegetation conditions, and anthropogenic infrastructure within parks may limit available habitat. Human activity on trails and roads may lead to indirect habitat loss, further limiting available habitat. Predators and prey may respond differentially to human activity, potentially disrupting ecological processes. However, research on such impacts to wildlife is incomplete, especially at fine spatial and temporal scales. Our research investigated the relationship between wolf and elk distribution and human activity using fine-scale Global Positioning System (GPS) wildlife telemetry locations and hourly human activity measures on trails and roads in Banff, Kootenay, and Yoho National Parks, Canada. We observed a complex interaction between the distance animals were located from trails and human activity level resulting in species adopting both mutual avoidance and differential response behaviors. In areas \u3c 50 m from trails human activity led to a mutual avoidance response by both wolves and elk. In areas 50 - 400 m from trails low levels of human activity led to differential responses; wolves avoided these areas, whereas elk appeared to use these areas as a predation refugia. These differential impacts on elk and wolves may have important implications for trophic dynamics. As human activity increased above two people/hour, areas 50 - 400 m from trails were mutually avoided by both species, resulting in the indirect loss of important montane habitat. If park managers are concerned with human impacts on wolves and elk, or on these species\u27 trophic interactions with other species, they can monitor locations near trails and roads and consider hourly changes of human activity levels in areas important to wildlife

    Humans Strengthen Bottom-Up Effects and Weaken Trophic Cascades in a Terrestrial Food Web

    Get PDF
    Ongoing debate about whether food webs are primarily regulated by predators or by primary plant productivity, cast as top-down and bottom-up effects, respectively, may becoming superfluous. Given that most of the world\u27s ecosystems are human dominated we broadened this dichotomy by considering human effects in a terrestrial food-web. We studied a multiple human-use landscape in southwest Alberta, Canada, as opposed to protected areas where previous terrestrial food-web studies have been conducted. We used structural equation models (SEMs) to assess the strength and direction of relationships between the density and distribution of: (1) humans, measured using a density index; (2) wolves (Canis lupus), elk (Cervus elpahus) and domestic cattle (Bos taurus), measured using resource selection functions, and; (3) forage quality, quantity and utilization (measured at vegetation sampling plots). Relationships were evaluated by taking advantage of temporal and spatial variation in human density, including day versus night, and two landscapes with the highest and lowest human density in the study area. Here we show that forage-mediated effects of humans had primacy over predator-mediated effects in the food web. In our parsimonious SEM, occurrence of humans was most correlated with occurrence of forage (beta = 0.637, p \u3c 0.0001). Elk and cattle distribution were correlated with forage (elk day: beta = 0.400, p \u3c 0.0001; elk night: beta = 0.369, p \u3c 0.0001; cattle day: beta = 0.403, p \u3c 0.0001; cattle, night: beta = 0.436, p \u3c 0.0001), and the distribution of elk or cattle and wolves were positively correlated during daytime (elk: beta = 0.293, p \u3c 0.0001, cattle: beta = 0.303, p \u3c 0.0001) and night-time (elk: beta = 0.460, p \u3c 0.0001, cattle: beta = 0.482, p \u3c 0.0001). Our results contrast with research conducted in protected areas that suggested human effects in the food web are primarily predator-mediated. Instead, human influence on vegetation may strengthen bottom-up predominance and weaken top-down trophic cascades in ecosystems. We suggest that human influences on ecosystems may usurp top-down and bottom-up effects

    Insertion of the DNA for the 163-171 peptide of IL1beta enables a DNA vaccine encoding p185(neu) to inhibit mammary carcinogenesis in Her-2/neu transgenic BALB/c mice.

    Get PDF
    Insertion of the DNA for the 163–171 peptide of IL1β enables a DNA vaccine encoding p185 neu to inhibit mammary carcinogenesis in Her-2/neu transgenic BALB/c mic

    Modelling eNvironment for Isoforms (MoNvIso): A general platform to predict structural determinants of protein isoforms in genetic diseases

    Get PDF
    The seamless integration of human disease-related mutation data into protein structures is an essential component of any attempt to correctly assess the impact of the mutation. The key step preliminary to any structural modelling is the identification of the isoforms onto which mutations should be mapped due to there being several functionally different protein isoforms from the same gene. To handle large sets of data coming from omics techniques, this challenging task needs to be automatized. Here we present the MoNvIso (Modelling eNvironment for Isoforms) code, which identifies the most useful isoform for computational modelling, balancing the coverage of mutations of interest and the availability of templates to build a structural model of both the wild-type isoform and the related variants
    • …
    corecore