160 research outputs found
Intrinsic resistance switching in amorphous silicon oxide for high performance SiOx ReRAM devices
In this paper, we present a study of intrinsic bipolar resistance switching in metal-oxide-metal silicon oxide ReRAM devices. Devices exhibit low electroforming voltages (typically − 2.6 V), low switching voltages (± 1 V for setting and resetting), excellent endurance of > 107 switching cycles, good state retention (at room temperature and after 1 h at 260 °C), and narrow distributions of switching voltages and resistance states. We analyse the microstructure of amorphous silicon oxide films and postulate that columnar growth, which results from sputter-deposition of the oxide on rough surfaces, enhances resistance switching behavior
In situ transmission electron microscopy of resistive switching in thin silicon oxide layers
Silicon oxide-based resistive switching devices show great potential for applications in nonvolatile random access memories. We expose a device to voltages above hard breakdown and show that hard oxide breakdown results in mixing of the SiOx layer and the TiN lower contact layers. We switch a similar device at sub-breakdown fields in situ in the transmission electron microscope (TEM) using a movable probe and study the diffusion mechanism that leads to resistance switching. By recording bright-field (BF) TEM movies while switching the device, we observe the creation of a filament that is correlated with a change in conductivity of the SiOx layer. We also examine a device prepared on a microfabricated chip and show that variations in electrostatic potential in the SiOx layer can be recorded using off-axis electron holography as the sample is switched in situ in the TEM. Taken together, the visualization of compositional changes in ex situ stressed samples and the simultaneous observation of BF TEM contrast variations, a conductivity increase, and a potential drop across the dielectric layer in in situ switched devices allow us to conclude that nucleation of the electroforming—switching process starts at the interface between the SiOx layer and the lower contact
Mechanisms of Oxygen Vacancy Aggregation in SiO2 and HfO2
Dielectric oxide films in electronic devices undergo significant structural changes during
device operation under bias. These changes are usually attributed to aggregation of
oxygen vacancies resulting in formation of oxygen depleted regions and conductive
filaments. However, neutral oxygen vacancies have high diffusion barriers in ionic oxides
and their interaction and propensity for aggregation are still poorly understood. In this
paper we briefly review the existing data on static configurations of neutral dimers
and trimers of oxygen vacancies in technologically relevant SiO2 and HfO2 and then
provide new results on the structure and properties of these defects in amorphous SiO2
and HfO2. These results demonstrate weak interaction between neutral O vacancies,
which does not explain their quick aggregation. We propose that trapping of electrons,
injected from an electrode, by the vacancies may result in creation of new neutral
vacancies in the vicinity of pre-existing vacancies. We describe this mechanism in aSiO2 and demonstrate that this process becomes more efficient as the vacancy clusters
grow larger
Modeling of Diffusion and Incorporation of Interstitial Oxygen Ions at the TiN/SiO2 Interface
Silica-based resistive random access memory devices have become an active research area due to complementary metal-oxide-semiconductor compatibility and recent dramatic increases in their performance and endurance. In spite of both experimental and theoretical insights gained into the electroforming process, many atomistic aspects of the set and reset operation of these devices are still poorly understood. Recently a mechanism of electroforming process based on the formation of neutral oxygen vacancies (VO0) and interstitial O ions (Oi2-) facilitated by electron injection into the oxide has been proposed. In this work, we extend the description of the bulk (Oi2-) migration to the interface of amorphous SiO2 with the polycrystaline TiN electrode, using density functional theory simulations. The results demonstrate a strong kinetic and thermodynamic drive for the movement of Oi2- to the interface, with dramatically reduced incorporation energies and migration barriers close to the interface. The arrival of Oi2- at the interface is accompanied by preferential oxidation of undercoordinated Ti sites at the interface, forming a Ti-O layer. We investigate how O ions incorporate into a perfect and defective ∑5(012)[100] grain boundary (GB) in TiN oriented perpendicular to the interface. Our simulations demonstrate the preferential incorporation of Oi at defects within the TiN GB and their fast diffusion along a passivated grain boundary. They explain how, as a result of electroforming, the system undergoes very significant structural changes with the oxide being significantly reduced, interface being oxidized, and part of the oxygen leaving the system
Green fluorescent diamidines as diagnostic probes for trypanosomes
LED fluorescence microscopy offers potential benefits to the diagnosis of human African trypanosomiasis, as well as to other aspects of diseases management, such as detection of drug resistant strains. To advance such approaches reliable and specific fluorescent markers to stain parasites in human fluids are needed. Here we report a series of novel green fluorescent diamidines and their suitability as probes to stain trypanosomes
Structure-dependent Inhibition of the ETS-Family Transcription Factor PU.1 by Novel Heterocyclic Diamidines
ETS transcription factors mediate a wide array of cellular functions and are attractive targets for pharmacological control of gene regulation. We report the inhibition of the ETS-family member PU.1 with a panel of novel heterocyclic diamidines. These diamidines are derivatives of furamidine (DB75) in which the central furan has been replaced with selenophene and/or one or both of the bridging phenyl has been replaced with benzimidazole. Like all ETS proteins, PU.1 binds sequence specifically to 10-bp sites by inserting a recognition helix into the major groove of a 50-GGAA-30 consensus, accompanied by contacts with the flanking minor groove. We showed that diamidines target the minor groove of AT-rich sequences on one or both sides of the consensus and disrupt PU.1 binding. Although all of the diamidines bind to one or both of the expected sequences within the binding site, considerable heterogeneity exists in terms of stoichiometry, site–site interactions and induced DNA conformation. We also showed that these compounds accumulate in live cell nuclei and inhibit PU.1-dependent gene transactivation. This study demonstrates that heterocyclic diamidines are capable of inhibiting PU.1 by targeting the flanking sequences and supports future efforts to develop agents for inhibiting specific members of the ETS family
The interplay between structure and function in redox-based resistance switching
We report a study of the relationship between oxide microstructure at the scale of tens of nanometres and resistance switching behaviour in silicon oxide. In the case of sputtered amorphous oxides, the presence of columnar structure enables efficient resistance switching by providing an intial structured distribution of defects that can act as precursors for the formation of chains of conductive oxygen vacancies under the application of appropriate electrical bias. Increasing electrode interface roughness decreases electroforming voltages and reduces the distribution of switching voltages. Any contribution to these effects from field enhancement at rough interfaces is secondary to changes in oxide microstructure templated by interface structure
Induced topological changes in DNA complexes: influence of DNA sequences and small molecule structures
Heterocyclic diamidines are compounds with antiparasitic properties that target the minor groove of kinetoplast DNA. The mechanism of action of these compounds is unknown, but topological changes to DNA structures are likely to be involved. In this study, we have developed a polyacrylamide gel electrophoresis-based screening method to determine topological effects of heterocyclic diamidines on four minor groove target sequences: AAAAA, TTTAA, AAATT and ATATA. The AAAAA and AAATT sequences have the largest intrinsic bend, whereas the TTTAA and ATATA sequences are relatively straight. The changes caused by binding of the compounds are sequence dependent, but generally the topological effects on AAAAA and AAATT are similar as are the effects on TTTAA and ATATA. A total of 13 compounds with a variety of structural differences were evaluated for topological changes to DNA. All compounds decrease the mobility of the ATATA sequence that is consistent with decreased minor groove width and bending of the relatively straight DNA into the minor groove. Similar, but generally smaller, effects are seen with TTTAA. The intrinsically bent AAAAA and AAATT sequences, which have more narrow minor grooves, have smaller mobility changes on binding that are consistent with increased or decreased bending depending on compound structure
The Unusual Monomer Recognition of Guanine-Containing Mixed Sequence DNA by a Dithiophene Heterocyclic Diamidine
DB1255 is a symmetrical diamidinophenyl-dithiophene that exhibits cellular activity by binding to DNA and inhibiting binding of ERG, an ETS family transcription factor that is commonly overexpressed or translocated in leukemia and prostate cancer [Nhili, R., Peixoto, P., Depauw, S., Flajollet, S., Dezitter, X., Munde, M. M., Ismail, M. A., Kumar, A., Farahat, A. A., Stephens, C. E., Duterque-Coquillaud, M., Wilson, W. D., Boykin, D. W., and David-Cordonnier, M. H. (2013) Nucleic Acids Res. 41, 125−138]. Because transcription factor inhibition is complex but is an attractive area for anticancer and antiparasitic drug development, we have evaluated the DNA interactions of additional derivatives of DB1255 to gain an improved understanding of the biophysical chemistry of complex function and inhibition. DNase I footprinting, biosensor surface plasmon resonance, and circular dichroism experiments show that DB1255 has an unusual and strong monomer binding mode in minor groove sites that contain a single GC base pair flanked by AT base pairs, for example, 5′-ATGAT-3′. Closely related derivatives, such as compounds with the thiophene replaced with furan or selenophane, bind very weakly to GC-containing sequences and do not have biological activity. DB1255 is selective for the ATGAT site; however, a similar sequence, 5′-ATGAC-3′, binds DB1255 more weakly and does not produce a footprint. Molecular docking studies show that the two thiophene sulfur atoms form strong, bifurcated hydrogen bond-type interactions with the G-N-H sequence that extends into the minor groove while the amidines form hydrogen bonds to the flanking AT base pairs. The central dithiophene unit of DB1255 thus forms an excellent, but unexpected, single-GC base pair recognition module in a monomer minor groove complex
Intrinsic Resistance Switching in Amorphous Silicon Suboxides: The Role of Columnar Microstructure
We studied intrinsic resistance switching behaviour in sputter-deposited amorphous silicon suboxide (a-SiO x ) films with varying degrees of roughness at the oxide-electrode interface. By combining electrical probing measurements, atomic force microscopy (AFM), and scanning transmission electron microscopy (STEM), we observe that devices with rougher oxide-electrode interfaces exhibit lower electroforming voltages and more reliable switching behaviour. We show that rougher interfaces are consistent with enhanced columnar microstructure in the oxide layer. Our results suggest that columnar microstructure in the oxide will be a key factor to consider for the optimization of future SiOx-based resistance random access memory
- …