51 research outputs found

    Relativistic Viscous Hydrodynamics for Multi-Component Systems with Multiple Conserved Currents

    Full text link
    We would like to formulate relativistic dissipative hydrodynamics for multi-component systems with multiple conserved currents. This is important for analyses of the hot matter created in relativistic heavy ion collisions because particle creations and annihilations of various particle species are frequently taking place there. We show that consistent formulation in such systems involves many non-trivialities, and derive constitutive equations that satisfy Onsager reciprocal relations and describe the systems without ambiguity.Comment: 4 pages, no figures - To appear in the conference proceedings for Hot Quarks 2010, June 21-26, La Londe-les-Maures, Franc

    QCD equation of state with Tsallis statistics for heavy-ion collisions

    Full text link
    Nonextensive statistics has attracted attention as a description of particle spectra in nuclear collisions at QCD energies. First, we construct the equation of state by incorporating Tsallis statistics based on the hadron resonance gas and parton gas models. Thermodynamic conditions are found to impose constraints on the qq-parameter of Tsallis distribution. Next, we apply the equation of state to the relativistic hydrodynamic modeling of nuclear collisions. The Cooper-Frye prescription is consistently modified. Numerical demonstrations indicate that the model may describe charged particle spectra at Large Hadron Collider in the transverse momentum range up to 6-8 GeV. Elliptic flow, on the other hand, suggests a narrower range of applicability.Comment: 9 pages, 5 figures; revised version to appear in Physical Review

    Microscopic analysis of the microscopic reversibility in quantum systems

    Full text link
    We investigate the robustness of the microscopic reversibility in open quantum systems which is discussed by Monnai [arXiv:1106.1982 (2011)]. We derive an exact relation between the forward transition probability and the reversed transition probability in the case of a general measurement basis. We show that the microscopic reversibility acquires some corrections in general and discuss the physical meaning of the corrections. Under certain processes, some of the correction terms vanish and we numerically confirmed that the remaining correction term becomes negligible; the microscopic reversibility almost holds even when the local system cannot be regarded as macroscopic.Comment: 12 pages, 10 figure

    Relaxation to equilibrium of expectation values in macroscopic quantum systems

    Full text link
    A quantum mechanical explanation of the relaxation to equilibrium is shown for macroscopic systems for nonintegrable cases and numerically verified. The macroscopic system is initially in an equilibrium state, subsequently externally perturbed during a finite time, and then isolated for a sufficiently long time. We show a quantitative explanation that the initial microcanonical state typically reaches to a state whose expectation values are well-approximated by the average over another microcanonical ensemble.Comment: accepted to Physical Review

    Diffusion in the Markovian limit of the spatio-temporal colored noise

    Full text link
    We explore the diffusion process in the non-Markovian spatio-temporal noise.%the escape rate problem in the non-Markovian spatio-temporal random noise. There is a non-trivial short memory regime, i.e., the Markovian limit characterized by a scaling relation between the spatial and temporal correlation lengths. In this regime, a Fokker-Planck equation is derived by expanding the trajectory around the systematic motion and the non-Markovian nature amounts to the systematic reduction of the potential. For a system with the potential barrier, this fact leads to the renormalization of both the barrier height and collisional prefactor in the Kramers escape rate, with the resultant rate showing a maximum at some scaling limit.Comment: 4pages,2figure

    Centrality dependence of elliptic flow and QGP viscosity

    Full text link
    In the Israel-Stewart's theory of second order hydrodynamics, we have analysed the recent PHENIX data on charged particles elliptic flow in Au+Au collisions. PHENIX data demand more viscous fluid in peripheral collisions than in central collisions. Over a broad range of collision centrality (0-10%- 50-60%), viscosity to entropy ratio (η/s\eta/s) varies between 0-0.17.Comment: Final version to be publiashed in J. Phys. G. 8 pages, 6 figures and 3 table

    Relativistic dissipative hydrodynamics with extended matching conditions for ultra-relativistic heavy-ion collisions

    Full text link
    Recently we proposed a novel approach to the formulation of relativistic dissipative hydrodynamics by extending the so-called matching conditions in the Eckart frame [Phys. Rev. {\bf C 85}, (2012) 14906]. We extend this formalism further to the arbitrary Lorentz frame. We discuss the stability and causality of solutions of fluid equations which are obtained by applying this formulation to the Landau frame, which is more relevant to treat the fluid produced in ultra-relativistic heavy-ion collisions. We derive equations of motion for a relativistic dissipative fluid with zero baryon chemical potential and show that linearized equations obtained from them are stable against small perturbations. It is found that conditions for a fluid to be stable against infinitesimal perturbations are equivalent to imposing restrictions that the sound wave, csc_s, propagating in the fluid, must not exceed the speed of light cc, i.e., cs<cc_s < c. This conclusion is equivalent to that obtained in the previous paper using the Eckart frame [Phys. Rev. {\bf C 85}, (2012) 14906].Comment: 2nd version. Typos corrected. 7 pages. Contribution to The European Physical Journal A (Hadrons and Nuclei) topical issue about 'Relativistic Hydro- and Thermodynamics in Nuclear Physics
    • …
    corecore