87 research outputs found

    Substrate-induced bianisotropy in metamaterials

    Full text link
    We demonstrate that the presence of a supporting substrate can break the symmetry of a metamaterial structure, changing the symmetry of its effective parameters, and giving rise to bianisotropy. This indicates that magneto-electric coupling will occur in all metamaterials fabricated on a substrate, including those with symmetric designs

    Tunable fishnet metamaterials infiltrated by liquid crystals

    Full text link
    We analyze numerically the optical response and effective macroscopic parameters of fishnet metamaterials infiltrated with a nematic liquid crystal. We show that even a small amount of liquid crystal can provide tuning of the structures due to reorientation of the liquid crystal director. This enables switchable optical metamaterials, where the refractive index can be switched from positive to negative by an external field. This tuning is primarily determined by the shift of the cut-off wavelength of the holes, with only a small influence due to the change in plasmon dispersio

    Cascaded four-wave mixing in tapered plasmonic nanoantenna

    Full text link
    We study theoretically the cascaded four-wave mixing (FWM) in broadband tapered plasmonic nanoantennas and demonstrate a 300-fold increase in nonlinear frequency conversion detected in the main lobe of the nanoantenna far-field pattern. This is achieved by tuning the elements of the nanoantenna to resonate frequencies involved into the FWM interaction. Our findings have a potentially broad application in ultrafast nonlinear spectroscopy, sensing, on-chip optical frequency conversion, nonlinear optical metamaterials and photon sources

    Diffraction-managed solitons and nonlinear beam diffusion in modulated waveguide arrays

    Get PDF
    We present the first experimental observation of nonlinear beam diffusion and formation of diffraction-managed solitons in periodically-curved arrays of coupled optical waveguides created using femtosecond laser writing in silica glass, and titanium indiffusion in LiNbO3 crystals

    Liquid crystal based nonlinear fishnet metamaterials

    No full text
    We study experimentally the nonlinear properties of fishnet metamaterials infiltrated with nematic liquid crystals and find that moderate laser powers result in significant changes of the optical transmission of the composite structures. We also show that the nonlinear response of our structure can be further tuned with a bias electric field, enabling the realization of electrically tunable nonlinear metamaterials.We acknowledge the support by the Australian Research Council, the Australian National Computational Infrastructure, and the ACT Node of Australian National Fabrication Facility

    Tilted response of fishnet metamaterials at near-infrared optical wavelengths

    Get PDF
    We study experimentally the transmission properties of Au-TiO2 -Au fishnet metamaterials in the near-infrared spectral range and analyze the change in the transmission resonances at varying angles of incidence and different input polarizations. The results show that the main transmission peak through the fishnet is due to the excitation of hole modes. This high-transmission region is significantly influenced by surface plasmon coupling when the incident electric field has a component normal to the metal plates, while little change with respect to tilt is observed when the electric field is parallel to the two metal films of the fishnet

    Dual-channel spontaneous emission of quantum dots in magnetic metamaterials

    Get PDF
    Metamaterials, artificial electromagnetic media realized by subwavelength nano-structuring, have become a paradigm for engineering electromagnetic space, allowing for independent control of both electric and magnetic responses of the material. Whereas mo

    Diffraction-managed solitons and nonlinear beam diffusion in modulated arrays of optical waveguides

    Full text link
    We study propagation of light in nonlinear diffraction-managed photonic lattices created with arrays of periodically-curved coupled optical waveguides which were fabricated using femtosecond laser writing in silica glass, and titanium indiffusion in LiNbO3 crystals. We identify different regimes of the nonlinear propagation of light beams depending on the input power, and present the first experimental observation of diffraction-managed solitons, which are formed as a result of the interplay between the engineered beam diffraction and nonlinear self-focusing or defocusing. We observe that in self-collimating structures where linear diffraction is suppressed, a novel regime of nonlinear beam diffusion takes place at the intermediate powers before the lattice soliton is formed at higher powers

    Spatially oriented plasmonic ‘nanograter’ structures

    Get PDF
    One of the key motivations in producing 3D structures has always been the realization of metamaterials with effective constituent properties that can be tuned in all propagation directions at various frequencies. Here, we report the investigation of spatially oriented “Nanograter” structures with orientation-dependent responses over a wide spectrum by focused-ion-beam based patterning and folding of thin film nanostructures. Au nano units of different shapes, standing along specifically designated orientations, were fabricated. Experimental measurements and simulation results show that such structures offer an additional degree of freedom for adjusting optical properties with the angle of inclination, in additional to the size of the structures. The response frequency can be varied in a wide range (8 μm–14 μm) by the spatial orientation (0°–180°) of the structures, transforming the response from magnetic into electric coupling. This may open up prospects for the fabrication of 3D nanostructures as optical interconnects, focusing elements and logic elements, moving toward the realization of 3D optical circuits
    corecore